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ABSTRACT

This report describes work carried out in support of a NASA sponsored two year

SBIR program to investigate the applicability of neural networks to spare systems.

NETROLOGIC and our subcontractors identified four different applications where neural

networks offered significant computational advantages. These applications were rocket

engine health monitoring, rocket control valve identification, cryogenic fuel mass estimation
and industrial weld estimation.

The first work described addresses the problem of on-line anomaly detection and

fault typing for the space shuttle main engine (SSME). The basic method involves sensor

data compression through neural nets and uses features representing time-variance of and

relationships between SSME sensor values. Actual test-stand test case data was employed

for training and testing.

Recognition of valve signatures in the ATLAS rocket (which contains some 150

valves of various types), was accomplished using feedforward neural networks. In this case,

data was collected in the form of electric current transient signatures from ATLAS rocket

valves installed on a pneumatic test bench. The data was then used as training and test data

for two neural networks, one which was trained to distinguish between signatures for

individual valves falling into three separate types of valves during a valve-open state change

(rising current), and the other which was trained to distinguish between signatures for the

same three types of valves during a valve-close state change (failing current).

Another effort described involved the use of feedforward neural networks to gauge

cryrogenic fuel mass by estimating the amount of mass in the tank from spectral resonance

measurements. Two types of networks were investigated, the first employing a compact

representation of the input space, the second retaining all the information in the resonance
measurements.

Finally, neural nets were used to determine the quality of an industrial inertia weld

by examining data accumulated during the welding operation.

The techniques employed to solve the problems above from different areas of health

monitoring for space propulsion systems can also be applied to many similar problems in

space transportation analysis.
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SECTION 1

SUMMARY

This report describes work carried out by NETROLOGIC and its subcontractors in,

the area of health monitoring for space propulsion systems, rocket engine control valve

identification, cryogenic fuel mass extraction and fuel mass estimation.

The general problem of determining when an engine/machine failure has occurred

received the largest amount of effort. The methods developed, although general, were

applied specifically to the problem of on-line anomaly detection and fault typing for the

space shuttle main engine (SSME).

The problem was to decide when to shut down an SSME based on data from a set

of sensors monitoring basic operating modes of the engine. The method under investigation

involved the computation of features representing the time-variance of and relationships

between SSME sensor values, using actual test-stand test case data. The choice of

appropriate features requires detailed expert analysis of the expected behavior of the sensors

both when the engine is functioning normally and when a failure occurs. In the

investigations that have been carried out so far, networks have been trained, using

backpropagation, to recognize a set of samples, corresponding to both fault and nominal

conditions, using features calculated from the sensor data recorded in test firings. After

such training, the network was able to diagnose nominal and fault samples from cases

withheld from the training data set with a high degree of accuracy.

The second effort addressed rocket valve signature recognition. In this case, data was

collected in the form of electric current signatures from ATLAS rocket valves installed on

a pneumatic test bench. The data was then used as training and test data for two neural

networks, one being trained to distinguish between signatures for a valve-open state change

(rising current), and the other to distinguish between signatures for a valve-close state

change (failing current). No errors were made on any of the training or test patterns by

either network in determining which valves were generating the signatures when noise was

not present, and both networks did very well when noise was limited to 10% or less. When

the amount of noise was very high, the networks could still distinguish between which of

three types of valves was generating the signal, but began to lose the capacity to distinguish

between individual valves. The success of neural nets to solve these relatively difficult

problems (potentially valuable for the reduction in hardware circuitry that could result), as

well as careful analysis of valve signatures in different valve states, makes it clear that neural

nets could distinguish between the states of valve opening, valve closing, valve stuck closed

attempting to open, valve stuck open attempting to close, etc.



Another investigation involved the use of feedforward neural networks to gauge

cryogenic fuel tanks by estimating the amount of mass in the tank from input spectral

resonance measurements. Two types of networks were applied, the first employing a

compact representation of the input space, the second retaining all the information in the

resonance measurements. It turned out that the second method required a larger training

set than the first. Both types of networks were able to learn to estimate masses, with

differing degrees of accuracy.

The last piece of work described in this report concerns work on detection of welding

failure during the construction of a jet engine. Its goal was to develop a neural network to

determine the quality of an industrial inertial weld by examining data accumulated during

the welding operation. Some of the networks tested showed 100% accuracy on the data of

unknown status that was presented to them.

Note: All of the investigations mentioned in this report used feedforward neural

networks trained with back-propagation. Feedforward networks can be trained to associate

arbitrary input patterns with arbitrary output patterns, and have the ability to categorize and

generalize, so that similar inputs can be expected to map to similar outputs, and new input

patterns, different from those on which the network has been trained, will be mapped to

outputs based on their similarity to training patterns.

In the basic operation of feedforward networks, connections are one-way, going from

inputs to the hidden layer to outputs (hence the name feedforward). Units in neural nets

are analogous to neurons. The connections between them are analogous to synapses. Each

of the connections in a neural network is characterized by a weight at every point of the

process, which is considered to be the strength of the connection. Each unit attains a level

of activation, which is a function of the weighted sum of its inputs.

The choice of how many hidden units to have in each layer is dictated by two

opposing factors. It is generally easier for a network to learn how to map inputs to outputs

if there are more hidden units, but if there are too many hidden units, the network is liable

over-specialize itself to in the particulars of training data employed, with the result that it

may be less successful at generalizing with new data.

Backpropagation is a very powerful method to use for supervised learning, and

requires allowing a network to train itself with the correct characterizations of the samples

in a training data set. During training, a comparison is made between the indicated correct

characterization and the characterization given by the network for every input and output

target pair in the training data set. Based on the difference between the target vector given

to the net and the results arrived at by the net, the neural network alters relevant

connection strengths so that its results for each training sample are closer to being correct
than before.
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In other words, after each pass through the training data set, this so-called "back-

propagation of error" usually enables the network to get closer to the correct results on

more and more of its samples. Eventually, the network's results for every case should be

close enough (as determined by a training tolerance) to the correct results so that the

network converges and training can be terminated. When the network results satisfy the

training tolerance decided upon, the network is said to have converged. For more details

about such neural networks, the reader may consult [6], or any of the many basic books

currently addressing the subject.

\
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SECTION 2

SPACE SHUTrLE MAIN ENGINE

FAI LURE DETECTION

2.1 Problem Statement and Summary of Investigation and Results

The problem of deciding to shut down a space shuttle main engine (SSME) when a

malfunction has apparently occurred is a very important one. The cost of a single SSME

is now given as 45 million dollars. The loss of a complete shuttle amounts to several billion

dollars in hardware alone, and the lives of human beings are involved as well. A shut-down

without need is also expensive on the ground. Cost estimates are harder to calculate

regarding this situation, but the whole test run must be repeated, and the cost of a single

test run has been loosely placed at a million dollars. Furthermore, in space, shutting down

one of the three SSMEs on the shuttle is considered to increase the general risk involved

in the flight.

In order to recognize danger signs early enough to shut down the rocket engine and

eliminate or minimize damage, an SSME fault detection system must be faster and more

accurate than existing systems. It appears that this should be possible, for with the current

test-stand failure response systems, which utilize automatic redlining, redundant sensors and

controller voting logic, along with human monitoring, post-test analysis of sensor data often

showed an indication of anomalous engine behavior well before a shutdown sequence was

initiated. Netrologic now has ample evidence that neural networks and related deterministic

data fusion methods can provide improved SSME test-stand fault detection in ways that have

natural extensions to in-flight monitoring.

A fast SSME diagnostic method is essential since a large number of simultaneous

sensor measurements (over 200 are available) are input to a test shutdown decision module

at a high sampling rate. Sensor data fusion and evaluation are complicated processes since

clues to engine performance may involve subtle combinations of sensor measurements

varying through time. Practical considerations dictate that a detection system cannot alter

the current engine or control system and should utilize existing data. Since the SSME's

major components are line replaceable units, ideally a fault detection system should be

independent of engine-to-engine performance variation.
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Neural networks contribute to effective failure detection since they are:

1)

2)

3)

4)

5)

fast, especially if implemented on parallel hardware;

capable of discovering subtle patterns in input data without being

explicitly taught what combinations are significant;

capable of generalizing based on previously learned examples of actual

test data;

robust --- relatively insensitive to noisy data; and

easily adapted to accommodate new information as it becomes
available.

It is not a simple thing to evaluate the success of an approach to the SSME shutdown

problem. At the very least, a method should not have any false alarms in firings of engines

that encountered no major difficulties (in the usual data set, case 457 and 463), and it

should find all faults that manifest themselves in data meeting the prerequisites of the
method.

But if methods find the fault in a case at times, possibly different than those pointed

to in the failure investigation reports (as when sensors began changing due to the fault),

then it is difficult for those who are not rocket engineers, who know about all the properties

of the first-generation engine that encountered the fault to know which of the times should

be considered correct. There are many small irregularities in the data of even very healthy

engines, and when a method detects one irregularity in a fault case, especially one of those

where earlier fault detection than indicated in the failure investigation reports could save

an engine, it is natural for the investigator to assume that the method is correct in declaring

a fault. Evidence of this effect in the fault-declare time taken for case 307 is given below.

Investigators were influenced by the outputs of earlier networks, and then by irregularities

they noticed in the raw sensor data. They decided to act on the assumption that their

method was correct when these tendencies were encouraged by conversations with others

who felt they or their methods had also detected the fault earlier in case 307 earlier than

the failure investigation reports.

Thus, for investigators who are trying to develop computational methods that might

detect irregularities in the data earlier than is easily done manually, it is difficult to

determine when they have succeeded if the results are not in some way confirmed by further

work by an analyst. A carefully designed fault simulator would be invaluable.
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For the present,it is reasonableto expectthe following of anSSME failure-detection
system.

a) If the SSME fails in a new way, faults will still be detected.

b) The system uses more than one sensor's values for a given point in time, and

considers relationships between them.

c) It uses relationships between data at different points in time, from different situations

(power level, venting/repressurizing, start-up, transient or steady-state situation),

involving single and multiple sensors.

d) It relates data from different cases.

e) It takes into consideration the parameters of a particular engine, and of a particular

firing.

A complete SSME failure-detection system can consist of several different

algorithms/nets that simultaneously give their estimates of the health of the engine, which

are then integrated by another algorithm. For instance, algorithms with different aims might

be running simultaneously - ones with emphasis on incurring no false alarms running

alongside ones that try to find a fault as early as possible (looking for any irregularity that

might arise). Thus not all the criteria listed above need be satisfied by any one part of the

system, but all should be satisfied by at least one.

And a different set of algorithms might be in force in different situations. For

instance, when an engine is being tested on the test-stand for the first time, algorithms

should not omit comparing sensor values produced by the engine to what might be expected

of the sensor values, based on experience with other engines. After the first time an engine

is fired, the failure-detection system might focus on comparing the engine with its own past

runs, or with its self earlier in the current run, once it has shown itself to be healthy at start-

up and settled down well into its first steady-state period.

The following very different kinds of neural networks can all provide valuable

information relevant to the SSME shutdown issue. Each has its strengths and its

weaknesses.

The Kohonen Novelty Detector.

This type of network is trained using data of a certain kind, and indicates when data
of a different kind is encountered.
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For the SSME shut-down decision, it would be appropriate to train a Kohonen
Novelty detector network on a very largeamount of unquestionablynominal data, i.e. data
which representsthe whole spaceof nominal data.This data should include data in which
there were minor faults not requiring engineshut-down,in order to avoid shutting downthe
engine without need. It is inappropriate to train a net with the apparently nominal data
sampled in the fault casesbefore the failure investigation reports indicate that the fault is
showingin the sensors,since it is desirable to have as large a possible set of cases to test
the trained network on. All these cases should be tested on a network that has not seen

them. Moreover the main information investigators need from such a network is where, in

the only fault cases that exist, the data first begins to look different from data in engines not

requiring shut-down. This decision should not be biased by including data in the training

set that possibly corresponds to a situation in which engine shut-down should already have
been initiated.

To test this kind of network, a broad spectrum of first generation nominal data is

required, taken from cases that did not experience major faults. After the behavior of the

network is ascertained in that case, the same kind of network can be trained on a broad

spectrum of second generation nominal data. It is likely to be meaningful to test such a

network on the first-generation fault cases, for reasons that will be gone into in some detail
below.

The Kohonen Feature Mapping Network or ART2.

These networks, like the first kind of network mentioned, employ what is called

"unsupervised learning s. In the case of supervised learning a network is told how to

separate its input space into categories relevant to the problem, while in

unsupervised learning, the network itself divides up the space.

The use of this kind of network was postponed since it would be more significant to

use such networks with a broader set of nominal data, in particular, second generation

nominal data. The value of this kind of network is that it will divide the input space up into

as many categories as specified, assuming it can find a way to do so. But once these

categories are created, investigators will have to have informed engineering input to

determine whether the categories are important for the problem, and most shuttle engineers

now work only with second-generation engines, and the development of these networks

would involve many months. Such networks, when presented with data from a fault case

and asked to divide the space into two categories, did divide it at approximately the fault-

declare time given in the failure investigation report (cf. [11]).
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Recurrent Networks and Networks with Data Windows.

Recurrent networks and networks employing data windows supply a segment of the

data stream to the network as a single input, i.e. a certain number of usually

consecutive samples are input to the network simultaneously. This is important when

networks are being constructed to explore the data provided to them (i.e. find

correlations, patterns) as much as possible, and is always worth exploring if there is

sufficient time.

There are many ways of encoding information involved in the stream of data that

comes into an algorithm in sequence. For example, it is possible to calculate "features" from

the data stream involving relationships between data at different points in time that

investigators feel would be valuable for the fault-detection method to consider. This latter

method allows more control over what a network is likely to draw its conclusions from, and

makes it more efficient for networks to determine categories naturally found through

consideration of the properties of the data reflected in the features. Calculating relevant

features is also more efficient in terms of space and time during the testing period.

Since, based on the promising SAFD results, it was determined that a set of five to

ten simple features is sufficient to handle the SSME shutdown problem, the path of

exploring features rather than data windows was pursued.

Feed-Forward Network Employing Feature Data, and Trained by Back-Propagation;

failure investigation report decisions taken as the guideline for the time of fault

occurrence.

As just mentioned, this SSME fault-monitoring method is the kind of network that

was chosen for the principle investigations of the project.

This method has the advantage of being very effective at avoiding false alarms, and

thus might be more suited for test-stand monitoring, while a more sensitive method could

be favored in-flight (e.g. Kohonen Novelty Detector). As indicated above, methods of both

these kinds could be run in the two situations, and integrator algorithms could integrate the

results differently in the two different situations.
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Since the fault-declare time given in the failure investigation reports is a time at

which the fault has unquestionably begun to occur, training networks to. aim at finding this

time should not be dangerous in terms of false alarms, if done with care. To minimize false

alarms the investigator can often not employ all the fault data. However, when choosing

samples with which to teach networks about the nature of fault data. For some of the fault

samples after the analyst-determined time of the fault look like other data that is considered

to be nominal. For this (human) decision regarding when test case faull data begins to look

unlike any nominal data that can ever be expected to occur, a richer set of unquestionably

nominal data than was provided by the two nominal cases is important.

The networks of this type that were created found fault declare times very close to

the time selected by the analysts who prepared the fault declare times for the training data

sets. In order to avoid false alarms, these times were generally chosen to be a little bit later

than the earliest ones given in the failure investigation reports. Most importantly, the

networks detected the faults in the gradually developing cases in time to shut down the

engine, and usually at a point in time very close to the times indicated in the failure

investigation reports as the point at which the failure began to show in the PID values. In

the rapidly developing cases, they detected almost every fault sample that was considered

by analysts to be unquestionably faulty. Unfortunately, this does not enable them to detect

the fault in time to save the engine. Even at the time of the first fault sample it detected

in these cases, it is too late to shut the engine down without experiencing major damage.

These networks, thus, worked well on the data set that was provided to them. The

question arises whether they could be expected to do well on the test-stand on second-

generation engines. Here a far broader range of nominal data in the training data set is

required, as well as the possible addition of more sensors, and of a few more features. But

the question remains whether or not those additions could be expected to be sufficient.

Does not the fact that only a few kinds of faults have occurred, and all those in first-

generation engines, totally preclude the value of this approach?

An argument can be given that this is not the case, and that such networks could, in

fact, be very effective without significant modification. The reasoning upon which such a

conclusion can be based also says something about the value of most other algorithms that

have used the information encoded in first-generation fault data, or established their

accuracy through tests on first-generation fault data.

The main assumptions that would guarantee the validity of the neural network

approach described in this report are:
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1)

2)

3)

The subset of sensors chosen can always be expected to be affected by any

major failure, i.e. by any failure requiring engine shut-down.

These sensors measure major parameters of the engine (pressure in the main

combustion chamber, etc.), while the changes in the engines over the years

have not affected the basic engine design, and as a result have not

significantly effected the expected values of the parameters measured by these

sensors.

The kinds of ways these parameters are likely to be affected as a major

engine failure develops, i.e. as the engine nears the point where major

damage is about to occur, will be similar over a large range of components

whose failure may cause the major breakdown, and examples of the ends of

most breakdown scenarios have already occurred. Thus, although a detection

method that learns from the faults that have occurred may not detect a fault

in time to prevent all damage, it may be able to prevent major damage.

Results of the current investigations with neural networks presented some evidence

for the third assumption, the hypothesis that failures in different components generally affect

the PIDs in similar ways. For the way the neural networks were checked was by training

on data from all the cases except one (case 173 was also always left out of training data

sets). The case the network had never seen was then tested. When the case withheld was

a fault case and the fault was detected, the network would also indicate how it had detected

the fault. Its output units would indicate which other cases's fault data the fault data in the

withheld was similar. The data corresponding to a fault occurring in one part of an engine

was often determined to be similar to data corresponding to a fault that had occurred in a

completely different part of the SSME engine.

Although each of the hypotheses listed above can be expected to have some degree

of validity, the quantification o fthe extent to which they are true must be established by SSME

engine analysts.

The excellent results obtained, however, indicate that the choice of doing an in-depth

investigation of this very well-understood and reliable network type first was a very good

choice. In summary, a neural network is an effective component of an SSME health-

monitoring system involving other components, since neural nets often find patterns that

analysts overlooked, and can be designed to inform other components of a fault-detection

system about specific parts of the shuttle engine whose performance is anomalous.
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2.2 Basic Network Structure

Feedforward neural networks consisting of a layer of 24-36 input units, one layer of

8-12 hidden units, and a layer of 1-10 output units were used. More layers of hidden units

could have easily been added, but the networks that were constructed learned all training

data essentially perfectly with only one hidden layer. In these networks, each of the input

units is connected to each of the units in the hidden layer, and each of the units in the

hidden layer is connected to each of the output units. Other parameters of the networks

that have been used recently are: output and hidden alpha of .05, output and hidden beta

of .04, range of initial weights of -.2 to .2.

2.3 Data Source and Description

The data available for SSME fault-detection investigations was a very large quantity

of sensor data from eleven actual SSME test-stand engine firings conducted between 1981

and 1989 (see Figure 2.1; in referring to cases in this report, the first three digits of the case

number as given in this figure will be omitted). For each case, the data included the values

of a large number of sensors, twenty-five values per second, recorded from the time the

shuttle engine was first fired and lasting, in the nine fault cases, until the time the engine

was turned off. In fact, such a command was issued in each fault case on the basis of one

or more of the engine sensors having exceeded a set limit, but it was never issued in time

to prevent severe damage to, the multi-million dollar engine involved.

If the number of cases is relatively small, but just these few cases generated many

millions of bytes of data that had to be run through a neural net from twenty-five to fifty

times for the network to be able to "learn" the data thoroughly. There was a total of about

45,000 data samples in the data selected for processing out of the test cases provided, each

sample being a set of sensor readings at a particular point in time during a firing. Thus this

data came very close to exceeding the space/time limitations of the computer hardware

available for the project. It turned out that the neural nets employed could in fact

generalize correctly to new data even given such a restricted training set, so that the data

set was adequate for these investigations. The extensions of the methods to actual test-stand

or space flight use should, of course, incorporate as much of the available data as possible.
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Figure 2.1 SSME (Space Shuttle Main Engine) TEST CASES

Nine Fault Cases

Case 901-173 March 31, 1978
LOX Post Fractures, Erosion MCC

Case 901-225 December 27, 1978
Main Oxidizer Valve Malfunction

Case 902-249 September 21, 1981
Power Transfer Failure, Turbine Blades

Case 750-259 March 27, 1985
MCC Outlet Manifold Neck, Fuel Leak

Case 901-307 January 28, 1980
LOX Post Fractures, Erosion FPS

Case 901-331 July 15, 1981
LOX Post Fractures, Erosion MCC

Case 901-340 October 15, 1981
Turn Around Duct Cracked/Torn

Case 901-364 April 7, 1982
Hot Gas Intrusion to Rotor Cooling

Case 901-436
Coolant Liner Buckle

February 14, 1984

Two Nominal Cases

Case 902-457

Case 902-463

November 1988

February 1989
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Only time periods during which the SSME was operating at full power for a given

power-level were considered, since steady-state fault diagnosis is a difficult and important

problem and transient analysis is much more difficult. The full power case is also the most

critical problem to solve because most major failures occurred during steady-state situations.

Transient anomaly detection is complex since the sensor data can be expected to change

quickly, and in complicated ways, when the power level is changing. Moreover, the patterns

of change may depend on the exact nature of the transient (start and finish power levels,

rate of throttling, etc.).

Steady-state data, on the other hand, has certain properties that can be exploited for

health monitoring. For instance, sensor values often remain reasonably steady so that values

that change considerably indicate something abnormal. The same criteria for engine health

should apply regardless of the amount of time elapsed in the steady-state period.

Netrologic recommends an investigation of the use of neural nets for failure detection

during the transient phase. Since neural nets can recognize distinctive time series such as

valve signature transients discussed below, they can be expected to be useful for rocket

engine transient analysis. Recurrent neural networks, which have been successfully applied

to sonar signal recognition problems, are a promising approach to this problem.

Most of the data used in this study came from recordings of cases in which faulty

engine performance occurred. The nine fault cases that were used represent failures of

various types, caused by malfunctions in different hardware components. Although this

provides a variety of data for training and testing, it also means that there is insufficient

fault data for a neural net to generalize in any detail about particular failure types.

Use has been made in the investigations described here of only a restricted subset

of the available sensor measurements, referred to as Parameter Identification Numbers

(PIDs) in NASA terminology and in this report. The selection of the twelve PIDs that have

been used (see Figure 2.2) was based on three factors:
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1) Availability for almost all cases under investigation. Not all sensors were installed

and functioning in every test firing. Since a fundamental objective is to combine data from
a number of test cases, and generalize to other cases, data must have very much the same
format for all cases. Therefore, a PID was chosen only if it were available for nearly all of
the cases used in these studies. However, this is not an absolute restriction: if a particular

PID is missing from a particular test case, it is possible to use zero values (values that
essentially tell the network that the PID is not changing) for that PID in that case. In fac{,

judging from the data received, it is essential for a method to be able to accgmmodate

missing, faulty, or "dead" sensors.

2) Significance for diagnosis. Analysis of fault case profiles shows that, for each

case, some sensors show strong early symptoms of faulty operation, while other sensors
appear to have less value for the diagnosis. Naturally, the PIDs which were chosen were

significant in the cases under investigation, and most of the PIDs chosen were significan¼ in

more than one case. A few examples of PID values are presented in the graphs in
Figure 2.4 and in Appendix A, Section A.1.

3) Current and expected future use. Only SSME PIDs which are currently in use,

so that there is data on their ordinary functioning, and which are expected to be in use in

the future would be valuable for the construction of a fault-detection system for actual
future use on the test-stand or in space.

It has been assumed that most of the data from the fault cases is actually indicative

of healthy functioning of the engine, for the vast majority of test data comes from before
the point in time when shuttle analysts have judged, after analysis of all the sensor data, that
the failure began to develop in the engine.

In fact, there was a very limited amount of fault data in five cases, because the
interval between this "fault-declare time" and the time of the last sensor measurements was

very short (as short as 0.12 and 0.16 seconds, or 3 and 4 fault samples).

2- 11



Figure 2.2. PIDs (Parameter ID's) for SSME (Space Shuttle Main Engine)
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11.

12.

18 (566) MCC CLNT DS T

Main Combustion Chamber Coolant Discharge Temperature B

24 (371) MCC FU INJ PR (MCC HG IN PR)

Main Combustion Chamber Hot Gas Injector Pressure A

40 OPOV ACT POS

Oxidizer-Preburner Oxidizer Valve Actuator Position A

42 FPOV ACT POS

Fuel Preburner Oxidizer Valve Actuator Position A

52 (459) HPFP DS PR

High Pressure Fuel Pump Discharge Pressure A

63 MCC PC

Main Combustion Chamber Pressure Average

209 (302) LPOP DS PR A

Low Pressure Oxidizer Pump Discharge Pressure A

231 (663) HPFT DS T1 A

High Pressure Fuel Turbine Discharge Temperature A

232 (664) HPFT DS T1 B

High Pressure Fuel Turbine Discharge Temperature B

233 HPOT DS T1

High Pressure Oxidizer Turbine Discharge Temperature A

234 HPOT DS I"2

High Pressure Oxidizer Turbine Discharge Temperature B

261 (764) HPFP SPEED

High Pressure Fuel Turbopump Shaft Speed

These are all CADS sensor measurements (data from sensors mounted on the engine, sampled 25 times per

second). Numbers in parentheses are corresponding facility measurements, when applicable.
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2.4 Pre-Processing of Data

The inputs to the networks are derived from PID values. Each sample fed into the

network corresponds to a particular point in time. However, the input values are not simply
the raw values for each PID at that time. The nature of the variation in PID values over

time may be more indicative of faulty performance than the value of the PIDs at any

isolated moment. Therefore, for each point in time, three features were originally,
calculated for each PID, which took into account the medium, long, and short-term history

of that PID leading up to that time (for the formulas used to calculate these features, see

Figure 2.3). These features resemble calculations used in Rocketdyne's SAFD algori'thm.

To save time and disk space, in the most recent runs the feature reflecting the short-term

history (the last .16 seconds) has been dropped, after it was found that the second feature

could usually be used to detect a fault just as quickly.

The use of averages in the features is for the purpose of smoothing out "noise" in the

sensor data. Thus the second feature is essentially the smoothed PID, with the smoothed

value at the beginning of the steady-state subtracted off to factor out differences across

individual engines and across different power levels for the same engine. The division by

the standard deviation in the raw PID value is done to put all features on the same scale,

in similar ranges. Both neural nets and humans often find it easier to work with data having

this property.

The first feature is an approximation to the local rate of change of the PID, and is

also more indicative of an abrupt change in the value of the PID than the second feature

is. Moreover, each of the three resulting features is a very crude measure of how much the

sensor value has changed over the time period being considered, compared to how much

it might be expected to change. This would be more precisely the case if the differences

were divided by the standard deviations in averaged PID values. But the features currently

in use employ averages taken over different periods of time. In any case, at least for

diagnosis using neural nets, division by constants are irrelevant unless information is lost.

Before features values are fed into the neural nets, their range is restricted to the

interval [-7.5,7.5] by truncation. This truncation limit truncates only fault values and allows

a small gap, a little more than 1, between the extreme range of nominal data, which is

around 5 and the upper bound, 7.5. Fault values for the features approach 1000 in our data,

so that it was felt that not truncating them might make it difficult for the network to detect

subtle relationships in the nominal data. Figures 2.4, 2.5, 2.6 and 2.7 contain graphs of the

raw PID values of PID 42 from the second steady-state time slice of case 436, and of the

corresponding three features calculated from them. Further examples of graphs of raw

values and the features corresponding to them occur in Appendix A, Sections 1 and 2.
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Figure 2.3 Features Computed for each PID for each Sample

MEDIUM TERM SMOOTHED CHANGE

avgSO(O-avg3(O

LONG TERM SMOOTHED CHANGE

Avg50(t)-Avg50(Q

0

VERY SHORT TERM CHANGE

where

x(O-Avg3(t-.o8)
0

X(t) = PID value at time t

avg3(O

avgSO(O

-- mean PID value for last 0.12 seconds (3 samples)

= mean PID value for last 2 seconds (50 samples)

o = standard deviation of nominal PID value

(derived from steady-state data from all available firings)

t, = time 50 samples after start of current steady-state interval
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As two or three features were used in the networks constructed, the total number of

simultaneous inputs to the network for each point in time was either two or three times the

number of PIDs. Since twelve PIDs are now being used, this means that the networks

currently employed have 24 or 36 inputs.

In future studies, more features will be computed for each sample, to provide more

detailed information on the time-variation of PIDs, or to explicitly input features which code

relationships between PIDs or other features. In theory, the network is capable of

performing any computation on the inputs, so all features calculable from the PID values

in a single data sample would be superfluous. In practice, however, inputing certain

compound features explicitly often causes the network to learn in a way that will lead to

better generalization. And unless recurrent neural nets are used, relationships between
PIDS measured at different times must be calculated and used to train a network.

The two features currently used, are sufficient for the detection of major engine

failures. However, additional features may allow slightly earlier detection of the faults that

have occurred, and perhaps allow the detection of additional types of faults.

2.5 Assignment of roles to output units

The output of the network represents its evaluation of the input data. The values of

the output units are all floating-point numbers between zero and one. Ten output units are

currently used, each of which represents a different diagnosis category.

The first output unit is designed to give the network's determination as to whether

the sample is anomalous (i.e. "fault': engine shutdown should be considered) or nominal

(engine performance is nominal). The remainder of the output units are used to give the

network's determination as to whether the sample it is evaluating seems to be like a fault

occurring in any of the fault cases in the training data. Thus there is an output unit for each
of the fault cases.

To train the neural net, the target value for each of these output units is set at 0.9

for "yes" and at 0.1 for "no". Thus a fault sample for the third fault case would have as

target values for the ten output units:

i.e.,

0.9 0.1 0.1 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1,

yes no no yes no no no no no no.

So here the first 0.9 (the first "yes') just says "this is a fault sample", and the second 0.9 (the

second "yes') says "this is a fault sample from case 249".
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As has been already mentioned, the fault-declare time initially taken for each of the

fault cases was based on NASA failure investigation reports which give times when NASA

analysts believed that sensors had started to indicate signs of problems or faulty

performance. Sensor samples taken before the fault-declare time were considered nominal,

and samples taken after that time were considered fault data.

Note that a nominal sample of the third fault case is not given the output unit:

0. I 0. I 0. I 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1,

but rather one in which the third "case" value (fourth target value) is set to 0.1 instead of

0.9. This is most nominal data is likely to be quite similar across cases. For the network

to distinguish between the different cases of nominal data would be a very difficult task (it

might take a very long time for training to converge), and forcing a network to use

particulars of the training data could make it more difficult for it to generalize in the way

it must to detect fault data it has never seen. Moreover, training a network to distinguish

between different nominal cases would usually have little value in terms of fault detection.

After a network is trained, it is then tested both on data contained in its training set,

and on new data. Values for output units close to 0.9 or 0.1 indicate whether the sample

is determined by the network to be fault or nominal, or similar to a fault case included in

the net's training data.

Thus a sample with the output values

0.85 0.15 0.09 0.05 0.06 0.08 0.05 0.10 0.10 0.91

would indicate a sample that was considered anomalous, and similar only to fault data in

the last fault case (case 436). In determining a trained network's evaluation of the nature

of a sample presented to it, the indication of "faultiness" currently used is a value greater

than .5 in the first output unit or a value greater than .5 on one of the "fault data in a fault
case" indicators.
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2.6 Fault-declare Times and Net-Structuring Issues

Reasons for pre-processing of data can only be discussed after the structure and

working of the networks is understood. It should be fairly dear that the decision as to which

samples should be included in the training set as fault samples and which should be included
as nominal will be critical to the nature of the trained network that will result.

But even after careful analysis of the data the appropriate selection of a "fault-declare

time" is not always a simple thing for an analyst to decide. Especially when it is a question

of what fault-declare time to use for neural net training and evaluation.

For instance, consider a sensor whose values one can see will soon be moving out of

nominal ranges. What point between where it first begins a continuous value change and

the extreme value it takes before the engine is destroyed or shut down should one label as

"fault-declare time"? And how many and which PIDs need to be faulty?

A fault appears to show itself at the beginning of the rise or fall of the first PIT)

whose values are changed by the fault, so that the point when any PID begins a change

indicative of the fault would be the appropriate "fault-declare time'. And this choice is

reinforced by the fact that one would really like to place the fault-declare time as early as

possible, for an engine must be shut down as quickly as possible after it begins to fail. It

is this kind of fault-declare time that NASA analysts discuss in the failure investigation

reports on fault cases.

But observations of nominal data often show that sensors go up or down

unpredictably for varying periods of time during nominal runs. Thus, a more suitable fault-

declare time to be given to a network for training might be the point at which some PID's

values first go outside the range of all values ever taken on during a completely nominal

run. In fact, both these criteria are now in use simultaneously for indicating fault-declare

times to the neural nets during training, the failure investigation report indication of the

time the fault first started being indicated by sensors, and the time at which sensor values

begin to look different from any clearly nominal data.

What led to this approach was the following. A first set of runs used only the "early

fault-declare time", the time the fault begins to show in sensors. But this led to many "false

alarms", nominal samples considered to be anomalous, being produced when trained nets

were tested on data from cases they had not seen. This was due to early fault data in fault

cases in the training data set looking very much like nominal data in the new cases.

In the most recent runs fault samples are put into the training data as faulty only if

they are strongly faulty, i.e. do not look like any clearly nominal data.
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Somedata that is considered to be nominal, but which is "border-line", was also taken

out of the training data set. The data that is excluded from all training sets has been called

"intermediate data" in this report.

The structure and number of samples in the data files that were used in the last

complete set of runs is given in Figure 2.8. The intermediate data excluded from all training

sets is indicated in this table and the number of samples in that category is enclosed in

parentheses in the nominal and fault columns. The analyst-determined fault-declare times

inherent in the data at the beginning of the runs is given in Figure 2.8 in the line under the"

times for the samples under consideration. All times are in seconds from start-up of the

engine. When there are numbers to the left and right of a slash on that line, the number

to the left is the early fault-declare time, the time at which the fault begins to show up

unquestionably in the sensor data, while the number to the right is the time at which the

feature values clearly begin to look different from all nominal data. When a number in

parentheses occurs before these other two numbers, it indicates a time in the middle of what

has been determined by analysts to be nominal data. All nominal data past that time has

also been called intermediate data, on the grounds that in these cases there in a continuous

slow movement from nominal-looking data to obviously faulty data, so that a line of

demarcation is actually impossible to decide upon. Thus it is left to the network to decide

where to place the fault-declare time, and any time within the intermediate range will be
considered correct.

Note that all data in case 173 was put into the intermediate category, because five

of the twelve PIDs are missing or in invalid ranges, so that it's data was considered too

inconsistent in nature with the rest of the data to be included in training data sets, or to

judge network performance by. The curly brackets on its case number in Figure 2.8 are
meant to indicate this. In fact none of the networks were able to detect that case 173 was

a fault case, all apparently having been trained to detect faults only if more PIDs gave

strong fault indications than was possible, given the PID situation in case 173. It is also not

clear whether case 173 should be considered a gradually or rapidly occurring fault. There

are signs of faultiness early on, but a very large change in many PID values occurs just

before the engine is shut down.

A set of runs before the most recent ones just mentioned was also made in which

every fault sample was included in the training data sets for those fault cases with a very

limited number of fault samples, this being done in hopes of catching the faults in these

cases as early as possible. Thus the two fault-declare times as described in the last

paragraph were used in this set of runs only for the gradually developing fault cases. But

there were still too many false alarms.
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Figure 2.8 Basic Data Files, July 1990

{1.}

2a.

2b.

2c.

3.

4.

5.

6.

7.

8a.

8b.

8c.

8d.

9a.

9b.

times

Case 173 112.00 - 201.08
165.68

Case 225tl 10.00 - 32.96

Case 225t2 37.00 - 60.96

Case 22513 65.00 - 255.60

255.52
Case 249 263.96 - 450.56

320.32/330.00

Case 259 43.96 - 101.50
101.36

Case 307 17.00- 75.00

18.92/24.00
Case 331 154.00 - 233.12

232.32/232.40
Case 340 24.00- 405.48

278.92/290.12
Case 36411

Case 364t2 14.00 - 39.96

Case 364t3 48.00 - 65.96

Case 364t4 74.00 - 392.12

(121)204.32/217.00
Case 436tl 153.96 - 220.00

Case 436t2 553.96 - 611.08

(610.56)610.72/610.76

samples

2228

575

600

4766

4666

1439

1451

1979

9538

650

450

7954

1652

1429

nominal

(1342)

575

6OO

4763

1409

1435

48

1958

6373

650

450

3258

1175 + (2083)
1652

1419

1415 + (4)

fault

(886)

0

0

3

3257

(242) +3015
4

1403

(127) + 1276
21

(2) + 19
3165

(280)+ 2885

0

0

4696

(317)+4379
0

I0

(1)+9

Intermediate

2228
1342 +886

242

127

2

280

2400
.2083 + 317

5
4+1

lOa.

lOb.

ii.

Case 457tl

Case 457t2

Case 463

104.00 - 166.96

176.00 - 219.96

103.96 - 238.12

1575

1100

3355

1575

1100

3355

0

0

0
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Moreover, the desired benefits of leaving the "weakly faulty" data in for the rapidly

developing faults did not materialize: networks trained on such data sets were worse at

detecting the faults even in the "rapidly developing" cases (and in the other cases as well)

with this approach than with the one now used that takes all "weak fault" data out of the

training set.

But in the two cases in which there were very many false alarms during these first

two sets of runs, cases 307 and 364, it was first concluded that it was very likely that the

networks had been more correct than the determination originally made in the failure

analysis reports. This judgement is still considered likely about case 307, which has high

feature values almost immediately, but the rising PIDs starting around 204 seconds in case
364 involved factors other than the fault. Such factors which make the fault-declare time

very difficult to determine. The early fault-declare times had presumably often been

determined by analysts by looking at graphs of the raw PID values for the cases individually.

Thus, the networks had shown that across-case comparisons, the kind networks make, are

important in determining both the early and late fault-declare times for cases.

The development described in the previous two paragraphs demonstrate that working

with neural nets is a dynamic interactive process. It demands quite a bit of thought

concerning how to construct the net (in particular what kind of feature data it should be

asked to operate on and what kind of output units to employ), as well as eventually in the

final analysis of the often very informative network outputs.

Various different SSME neural net approaches, including the unsupervised learning

networks mentioned above, may make the "fine-tuning _ involved in the fault-declare time

considerations just discussed irrelevant if they are as successful as the current approach.

They could eliminate the problem that exists deriving from the fact that it is not actually

known how much, if any, of the data in the fault cases should really be called nominal.

As mentioned earlier it could turn out that with only slight modifications the feed-

forward back-propagation neural network approach that has been extensively investigated

may turn out to be one of the most fruitful neural network approaches to this problem.

Two additional variations on that technique are important. One approach to training

a network would be to use the second-generation nominal data trained against synthetic

deviant data. Note that this approach in some sense eliminates difficulties involved in the

decision about fault-declare time for cases in the training data. The problem reemerges

again, however, when one tries to evaluate this method by testing it on first-generation fault

cases. If the network says the fault occurs at a different time than the failure investigation

reports, again: how is one to decide when the network is correct other than by having

engineer/analysts rethink the issues involved?
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The secondapproach would be to train networks with both genuine and synthetic

fault data, in order to "fill out" the space of fault data presented to the network.

Various methods of generating synthetic deviant data could be used, including

generating random values for PIDs. Since random data would have none of the correlations

that exist between various PIDs, and because several PIDS will be generally be outside

nominal ranges, almost all randomly generated data would be quite different from nominal

data. Early experimentation with randomly generated synthetic data resulted in large

numbers of false alarms, in spite of the fact that almost all data generated had several PID

values outside the range of most nominal data. Additional features (especially ones

specifically encoding correlations between PIDs and more properties of time sequences) may

help with characterizing nominal data to a network of this type.

It will be effective to restrict the synthetic data set in various ways. However, the

danger with introducing a restricted synthetic data set is that the end effect can be to have

the neural net learn the theory embodied in the choice of the synthetic data. For example,

if'deviant" data were restricted to data whose Euclidean distance from the origin was larger

than five, say, the network might diagnose as fault precisely those samples whose distance

from the origin was greater than five. Thus, the network could ignore all the information

embodied in the real test-case data in its training set, with the exception of the fact that

most of it had a Euclidean distance from the origin of less than five.

Generating restricted deviant data is promising. In particular, synthetic deviant data

might be generated by creating samples with n features, n - 3, 4, 5, outside the range

of any nominal data in the test cases in the training data set for a holdout case, the

remaining features could be given random values between -1 and 1. If this results in false

alarms in the holdout case as in the past, an attempt could be made to "fill in" the nominal

range by generating midpoints between nominal samples in different test cases. Note that

synthetic data could be labeled as to which PIDs are out of nominal ranges in the sample.

Then a sample found similar to data with PID N, and PID N alone, out of range, would
probably be assumed to be indicative of a sensor failure associated with PID N.. While in

cases with several PIDs out of range, the nature of the fault could be identified much more

precisely by knowing which PIDs were leading the network to assume that a fault had
occurred.

A related approach requires the existence of a fault-simulation program. Developing

such an approach would be a major undertaking even though there is currently a simulator

that simulates healthy engine performance. A network could be trained with a large amount

of genuine nominal data from recent engines along with synthetic fault data generated by

the fault simulator. In any case, such simulated fault data would be valuable for the testing

of any fault-detection system involving situations where there is insufficient actual fault data.
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It should be pointed out in this training data/net structuring context that the problem

of/ailed sensors that has been identified as a serious one, especially when there is little

sensor redundancy (more than one sensor measuring the same thing) as on the SSME. It

is very important that a fault detection system, especially one designed to make a decision

whether or not to shut down a main engine, be able to tell the difference between a

failed sensor and a failed engine whenever possible. The approach we employed is to just

leave the apparently erroneous PID data in the training data set (missing PIDs were given

the value of zero), so that the networks can learn to ignore such failed sensors, combined

with a technique of switching to'a different network that overlooks a particular sensor if it

is found that the original network no longer declares a fault if a single sensor is omitted (see

below for an example based on case 457). Networks performed well for the occasional

missing or apparently failed sensor.

Fortunately, in all the fault cases so far examined, eventually several PIDs

simultaneously indicate the fault, so that missing PIDs, if they are not too numerous, have

not posed a serious problem. The problem of having a failed sensor cause a false alarms

was solved by feeding into the original network the same feature values except for having

zeros replace the true values of the PID in question. This approach to the problem of failed

sensors will of course detect faults only after they are being indicated by two or more PIDs

simultaneously.

2.7 Fault-Typing

It would be very useful for a network to be able to distinguish between different

failure types. For instance, this will be true if different shutdown or safety procedures are

employed depending on the type of the failure involved, or if the neural network forms a

part of a larger fault detection system that could benefit from any information the network

can provide. Indeed, fault detection should optimally involve the notification of a failure,

the isolation of the type of failure, and the estimation of its severity. Work so far has

emphasized detection of a possible failure warranting a shutdown sequence, and isolation

both through attempting to detect similarity to past failures and through detecting which

PIDs are being used by the network to indicate the fault. The severity of the possible fault

was not addressed, but some estimate of security could be derived by looking at the values

of the PIDs indicating the fault (both their values and their rate of change).

Further study of fault isolation and severity estimation should be pursued. As already

mentioned, one approach would be to include output units to indicate which PID features

are considered abnormal. It is expected that further developments in these areas will be

made on the basis of in-depth understanding of the functioning of the shuttle engine,

including a detailed analysis of how each specific kind of failure can be expected to be

reflected in the sensor values. This kind of knowledge would naturally lead to a failure

simulator, which would provide a categorization of errors and an evaluation of their severity.
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2.8 Training Method and Results

The method used in the most recent sets of runs is to train a network on data from

all the SSME test cases except one, with all the "intermediate" data discussed above left out

of the training data set. It has been mentioned that all of case 173 data was placed in the

intermediate data set. Thus, a training data set contains data from nine test cases, except

when case 173 is the case being tested, in which case the training data set has ten test cases.

For the five cases that contained very low proportions of fault data, the fault samples

were duplicated in each training data set a hundred times in the first set of runs, and two

hundred times for the later sets of runs. This was done in order to train the network more

quickly and more accurately. Without this duplication, the kind of data occurring in the

rapidly developing faults would be seen so infrequently by the neural net in training that it

would have a very hard time learning it. Moreover, after the first set of runs the last 728

samples of the fault data in each of the four cases with large amounts of fault data were

duplicated once, in order to bring the amount of fault and nominal data into a better

balance. The training data file was shuffled thoroughly before the network was trained.

Networks were trained using 25-50 passes through the training data set. After

training, the trained networks were tested on the training cases. The first networks, which

worked only with the initial fault declare time, i.e. had no intermediate data withheld from

the training data set, so that they contained similar nominal and fault data required more

passes to learn the data set, about 2,500,000 pattern presentations, or on the order of 50

passes through the data set.

When the training data sets excluded all intermediate data, networks that trained on

1,500,000 pattern presentations, or about 30 passes through the training data set, still

learned the data with very high, often perfect, accuracy i.e. after training for the amount of

time specified, they would output "nominal" when fed nominal data, and "fault" when fed

fault data from the training data set. When learning was not quite perfect, the incorrect

outputs always occurred for data immediately before or after the fault-declare time. This

not only showed the difficulty of handling similar data in the two categories but also the

related fact that the transition period around the fault-declare time was the most difficult

to learn. In fact, the training in the last sets of nets, where intermediate data was taken

from cases with both large and small amounts of fault data and two of the early fault-

declare times and intermediate data sets were adjusted to reflect what the first sets of

networks had pointed out, was too perfect. Reducing the number of pattern presentations

even further, or reducing the number of hidden units, would possibly produce better results
than the ones now obtained.

Figures 9 and 10 summarize the procedures and structure of the neural networks

employed.
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The following table summarizes typical training results for a set of hold-out runs

using intermediate data (the data is taken from runs made with the data structured as

described in Figure 2.8).

Holdout Trained Correct

Case Samples Samples

173 50,000 49,998 = 99.996%

225 43,462 43,460 = 99.995%

249 44,848 44,846 = 99.995%

259 47,765 47,763 = 99.995%

307 47,948 47,946 = 99.995%

331 44,242 44,240 - 99.995%

340 40,014 40,012 = 99.995%

364 42,618 42,618 =100.000%

436 45,133 45,129 = 99.991%

457 47,325 47,325 =100.000%

463 46,645 46,643 = 99.995%

The real test for neural networks comes when a trained network is asked to make

determinations on data it had never seen, which in the investigations being described means

on cases it has never seen. Very early runs with networks trained on data from three or

four cases indicated that networks might fail to find any faults without synthetic data being

added to expand the fault data set. But none of the recent runs using all cases except one

or two in the training data (and no synthetic data) failed to detect fault data, showing that

adding just a few more cases gives sufficient "richness" to both the nominal and fault data

sets to allow the networks to discriminate. The complete set of runs that was made with the

refinements to the structure of the training data sets that have been discussed above (the

resulting structure of the data files as given in Figure 2.8) were very successful. The results

of these networks is given in the following table:
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Case Correct Incorrect Correct Incorrect

Nominal Nominal Fault Fault

173 1342 0 0 886

225 5938 0 2 1

249 1409 0 3050 207

259 1435 0 4 0

307 48 0 1318 85

331 1958 0 19 2

340 6373 0 2928 237

364 2275 0 5852 927

436 3071 0 7 3

457 1791 884 0 0

463 3355 0 0 0

Table 2.1 Neural Net Determination of Samples as Nominal or Fault

Number of Samples Evaluated Correctly

The correct nominal column gives the number of samples in the case in question that

were labeled nominal by an analyst and which had firings of less that .5 on all the neural

net output units (i.e. was determined to be nominal by the neural network according to this

criterion). The incorrect nominal column gives the number of samples from the case that

were labeled nominal by the human analyst, but for which the neural net fired greater than

or equal to .5 on at least one of its output units. The second two columns contain similar

numbers for samples labeled anomalous (i.e. "fault') by the human analyst.

Note that each line corresponds to a different neural net; a neural net trained on a

different set of training samples than used for the other nets. For instance the first line is

for the run during which all of case 173 data was withheld from the training data set so that

the training data set contained data from the remaining ten cases, with the exclusion of

intermediate data. And the second line corresponds to the network for which case 225 data

was withheld from the training data set so that the training data set contained data from

cases 249 through 463 (case 173 data is excluded from every training data set).

The information given in Table 2.1 is perhaps more relevant when given in terms of

percentages:
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Case Correct Incorrect Correct Incorrect

Nominal Nominal Fault Fault

173 100% 0% 0% 100%

225 100% 0% 66.7% 33.3%

249 100% 0% 93.6% 6.4%

259 100% 0% 100% 0%

307 100% 0% 93.9% 6.1%

331 100% 0% 90.5% 9.5%

340 100% 0% 92.5% 7.5%

364 100% 0% 86.3% 13.7%

436 100% 0% 70% 30%

457 67% 33% NA NA

463 100% 0% NA NA

Table 2.2 Neural Net Determination of Samples as Nominal or Fault

Percentages of Samples Evaluated Correctly

All these percentages depend on decisions made about fault-declare times. In cases

173, 307 and 364 (fourth time slice), the true time of the fault is very much in question

(possibly occurring at the very beginning of the time slice in question). It is best to focus

on the fact that whenever the fault developed slowly enough to allow a safe engine shut-

down to be possible, the networks detected faults (often very different from those they had

been trained on) long before the time required to perform an engine shutdown.
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The test sets contained all the samples around the fault in the holdout case, i.e. they

included all the intermediate data as well, while most of this data was withheld from training

data sets specifically because it was on the borderline between nominal and anomalous data.

Since these quantitative network evaluations are the only way to give some kind of measure

of the effectiveness of the networks, it would be more appropriate to evaluate the network's

performance on the nonintermediate samples alone as well. The following two tables provide

the same information as in the ones just given for the samples in cases that were not put

into the intermediate data category.

The intermediate data has been determined by trained networks to consist of

approximately half nominal data and half fault data.

Case Correct Incorrect Correct Incorrect

Nominal Nominal Fault Fault

173 1342 0 0 886

225 5938 0 2 1

249 1409 0 3015 0

259 1435 0 4 0

307 48 0 1272 4

331 1958 0 19 0

340 6373 0 2885 0

364 2275 0 4343 36

436 3067 0 7 2

457 1791 884 0 0

463 3355 0 0 0

Table 2.3 Neural Net Determination of Samples as Nominal or Fault

Numbers of Samples Evaluated Correctly, No Intermediate Data

The table giving percentage values is again perhaps more valuable, at least for the

gradually developing cases:
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Case Correct Incorrect Correct Incorrect

Nominal Nominal Fault Fault

173 100% 0% 0% 100%

225 100% 0% 66.7% 33.3%

249 100% 0% 100% 0%

259 100% 0% 100% 0%

307 100% 0% 99.7% 0.3%

331 100% 0% 100% 0%

340 100% 0% 100% 0%

364 100% 0% 99.2% 0.8%

436 100% 0% 77.8% 22.2%

457 67% 33% NA NA

463 100% 0% NA NA

Table 2.4 Neural Net Determination of Samples as Nominal or Fault

Percentages of Samples Evaluated Correctly, No Intermediate Data

It is noteworthy that for some samples the network would fire under .5 on the first

output unit (the nominal/fault output unit), while firing above .5 on one of the cases which

meant the network concluded that the sample looked like fault data in that case. The

results given in the above tables are those obtained by declaring a sample to be determined

to be anomalous by the net if any of the ten output units fires above .5. This shows an

unexpected benefit of having asked the net to distinguish between the fault cases. A

network that had been trained without the "case" output units, with only the nominal/fault

output unit, would not necessarily give the same results as seen in the single nominal/fault

output unit of a network trained with many output units.

The following table presents the "fault-declare" times determined by the last set of

runs. Here the "first" net-determined fault-declare time" corresponds to the first fault

sample detected, the "early" net-determined fault-declare time is the first time the network

found ten consecutive samples faulty, and the "late" net-determined fault-declare time is the

first point at which all samples from that time on were considered faulty. The time is the

number in parentheses in the table following the analyst-determined early fault-declare time

are for the end point of intermediate data for the case.
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Fault Declare Times

Case Net, First Net, Early Net, Late Analyst

225 255.56 NA 255.56 255.52

249 328.24 329.04 329.04 320.32(330)

259 101.36 NA 101.36 101.36

307 22.16 22.16 48.00 18.92(24)

331 232.16 232.40 232.40 232.32(232.40)

340 287.48 289.52 289.52 278.92(290.12)

364 138.60 138.88 221.72 204.32(217)

436 610.84 NA 610.84 610.72(610.76)

More relevant to the savingof the engineis the length of time between the time the
fault was detected and the time engine shutdownoccurred.

Secondsfrom Fault Declare Time To Shut-Down

Case Net, First Net, Early Net, Late Analyst

225 .08 NA .08 .12

249 122.32 121.52 121.52 130.24

259 .16 NA .16 .16

307 52.84 52.84 27.00 56.08

331 .76 .76 .76 .84

340 118.00 115.96 115.96 126.56

364 253.52 253.24 170.40 187.80

436 .28 NA .28 .40

It can be seenfrom these tables that "false alarms', nominal samples being declared

anomalous by the net, occur only in case 457 when the net has finished categorizing data.

With the exception of this case, the networks have clearly satisfied what was required of

them, namely to detect faults in time to shut down the engine when possible, while not

indicating a shutdown when it is not required.
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Note that in the 5 cases with less than 30 fault samples, it would not be possible to

shut the engine down in time to prevent damage, assuming there is in fact no way to detect

the fault more quickly from the PID values in these cases, for it takes several seconds to

shut a space shuttle main engine down. Nevertheless, the networks did detect all but the

first sample or two in each of these cases.

The false alarms in case 457, it turns out, are due to PID values different from

nominal values in all other training case due to something called "venting" and

"repressurization" being carried out in this case.

Conversations with NASA concerning this provided the additional information that

this situation had also occurred in cases 364 and 463 and also in other cases, but long before

the time slice selected for inclusion in this data. It makes case 364 particularly confusing,

because the early fault-declare time originally used, the time of 201.4, is actually the time

of the beginning of repressurization, so that the actual occurrence of the fault could be

anywhere in the time slice. It is a similarity to case 364 that is causing case 457 to be

perceived by the net as faulty. The nature of the venting and repressurization operations

carried out in case 463 had produced less extreme PID values than in case 457, so that

having case 463 nominal data in the training set was unable to prevent having case 457 be

seen as like case 364. With the test cases now used, it was impossible to make the false

alarms in case 457 completely disappear, even by calling all of case 364 data nominal up to
second 248.

This problem o/the kind o/false alarms that occur in case 457 would almost certainly

disappear with a larger nominal data set, i.e. with a data set including more nominal cases

with data like that seen in case 457. Having such data would not make case 364 appear

nominal, because the training set that case 364 was tested against had been trained with

case 457 nominal data. Since networks have never encountered any difficulty training

themselves to consider all of the case 457 data as nominal, it is clear there is a "gap"

between case 457 data and the fault data in the fault cases (when there is overlap between

two categories, networks have difficulty converging during training). Networks, like any

other fault-detection method that bases itself on what has actually been seen to occur in the

past, can always fail when nominal values more extreme than any nominal data it has been

given is presented to it. Further ways of dealing with such false alarms should be

investigated. For instance, training a network to also evaluate the severity of fault data (as

indicated by the norm of the feature vector, for instance), and only declaring a fault when

the fault is determined by the network to be of more than minimal severity.

Other very interesting approaches to this problem will be discussed at the end of this

section, but a further way of understanding the results obtained by the networks should be

seen first.
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The graphs of the neural network output units will be given in this section and a

larger number of examples may be found in Appendix A, Section 3. The first output unit,

"output unit 0" on the graphs (the number of the output unit occurs to the right of the

graph), is the nominal/fault output unit. The networks are trained to output .1 for nominal

samples and .9 for fault samples. The remaining output units are trained to have an output

of .9 mean "like a fault sample in case ...n. Since case 173 has been dropped from training

data sets, the correspondence is for the "case" output units is:

Output Case
Unit

2 225

3 249

4 259

5 307

6 331

7 340

8 364

9 436

Section 3 of Appendix A ends with the graphs of the two completely nominal cases,

case 457 and case 463, so that the reader can get a feeling for what being seen as nominal

by a network looks like by looking at them first. Figure 11 contains a graph of the

nominal/fault output unit for case 463, and since case 463 appears the most nominal of all

cases to the networks, it is suggested that first graphs to be examined in Appendix A be for

that case. It can be seen that almost all output units are close to .1, as they do in Figure 11.

Nevertheless, output unit 4 rises at about 132 seconds into the firing; apparently part
of case 463 has a certain resemblance to some fault data from case 249. This is one of the

slowly developing cases, so that it may still contain some fault data that is not very faulty,

even though most of the less faulty data was put into the "intermediate" category. After

looking at case 463, it can be seen that the network considers case 457 to be faulty.

For the remainder of cases, the fault cases, graphs of "case" output units are only

included in Appendix A, Section 3, if they are at least slightly indicative of the fault
involved.
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As an example of neural network output for a fault case, Figures 12, 13, 14, 15, and

16 contain graphs of the output units from the network trained on all cases except cases 364

and 173, when tested on the fourth time slice of case 364. Consider first the first output

unit, the one that should fire around .1 for nominal data and around .9 for fault data.

The first output unit (the nominal/fault unit) for case 364 rises gradually from .1 at

the beginning of the fourth steady-state time slice, 74 seconds into the firing, to settle at .9

at around 244 seconds. It is above .5 most of the time after 170 seconds, however. Looking

at the graph of the first or fourth output unit (output units number 0 and 3 on the graphs)

might suggest the fault was developing from the beginning of the time slice. In any case,

the decision to have all the samples between seconds 121 and 217 in the intermediate data

shows the appropriate caution about case 364 and the possibility that the data before second

121 might actually be faulty not too dangerous, for it does not appear to be very strongly

faulty, even as evaluated by the network.

For the graphic illustration to accompany the rest of this discussion of neural net

outputs, the reader should consult Appendix A.

The graphs of the first output unit become high in case 225, 249, 259, 331, and 436

(all the rapidly developing cases, as well as case 249) at almost exactly the analyst-
determined fault-declare time.

Case 173 never reaches .5 in either the first output unit nor in any of the case units.

But output unit 8 rose very suddenly and approached .4 just before the engine was shut

down and other output units rose very suddenly at the same point.

It is interesting that in case 225 the first output unit is not indicative of the fault.

Note that only output unit 6 fired high.

Case 307 was originally assigned a fairly late fault-declare time: the failure analysis

investigations determined that symptoms began showing regarding the fault only after 31

seconds into the firing (according to that analysis, various PIDs starting indicating the fault

at 31, 38, 44, 47, 49, 55, and 61 seconds). Note that the graphs of output unit 2 (the output

unit indicating similarity to fault data in case 225) and output unit 0 increase sharply at both

sometime between second 21 and second 23 and again sometime between second 61 and

second 63. But investigators have already noticed earlier indications of this fault. Early

fault-declare time has recently been taken as 18.92 seconds (late fault-declare time as 24

seconds) based on an in-depth examination of feature values across cases (suggested by the

net-determined earlier fault-declare time obtained from preliminary networks for this case).

Case 340 rises dramatically from around .1 at 284 seconds to around .9 at 290

seconds and begins to move upwards a little earlier. This is essentially the period spanned

by the intermediate data for case 340.
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Analysis of these graphs raises the question of how to actually decide to shut down

an SSME based on neural net output. Should it be clone as soon as the neural net output
exceeds a threshold for a certain number consecutive.

Or, should the engine be shut down immediately whenever neural net output exceeds

.9? Should the SSME be shut down immediately if there is a very large jump upwards in

the neural net output between two or three time samples (say a sudden jump of .3 or .4),

independently of what the output was at the end of the jump?

Such issues would of course have to be resolved by any failure-detection system trying
to reach the same decision.

Furthermore the question of the kind of fault-typing such networks can provide

should be raised. Since every fault sample in every training data set is associated with a

case, it is not surprising that almost every sample determined to be a fault sample by a

holdout network generally fires on both the first output unit and one or more of the case

units. This is not the case unit that occurs for that case that was not included in the training
data set.
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By examining the graphs one can discover that the holdout networks found the

similarities between cases given in the following table. Here the fault samples in the left

hand column case have been found similar to fault samples in the right-hand column cases,

in the order of importance shown.

Case Similar Cases

173 364

225 331

249 364, 436

259 340

307 225, 259

331 436, 249

340 249, 225, 364

364 249, 436

436 331,249

457 364,307

463 249

According to a broad characterization of failures into six different categories that

occurs in the SAFD report produced by Rocketdyne, cases 173, 331, and 307 are all LOX

Post Fractures, case 259 is a failure is an MCC outlet manifold, case 225 is a valve failure,

and cases 340, 436, 364 and 249 are all High Pressure Fuel Turbopump Failures.

To the extent that cases 249, 364 and 436 have been detected as similar, the

categorization by the networks reflects this division. And cases 225 and 331 both involve

the oxygen side of the engine. One would have to feed into a network as training data a

finer characterization than is provided now in order to get a finer characterization out of
the network.

The discussion of fault-typing leads indirectly back to the problems involved in case

457. In the discussion of fault-typing given earlier it was mentioned that two approaches to

this problem had been investigated, the case to case similarity just mentioned, and the

elimination of PIDs by replacing their features values with zero, to see if the PID values

in question had been necessary for the network to detect the fault.
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The second kind of fault-typing will not be illustrated in general, but will be
demonstrated in a special situation, one that provides a way of handling the

venting/repressuring situation of case 457. For PID 209 is the one most strongly affected

by the venting/repressurizing process. Figure 2.17 presents the result of testing the same

network on case 457 data with the features corresponding to PID 209 replaced with zeros.

The fault completely disappears. So a second, and simple solution to the

venting/repressurization problem presented by the current "fault" in case 457 is the

elimination of PID 209 from the networks' sensor set whenever venting/repressurizing is

occurring. The first effective solution, mentioned above, which is also a simple one, was the

use of a representative set of nominal data, which would presumably include data like that

seen in case 457.

Figure 2.18 contains the graph of the nominal/fault output unit for the holdout case

364 neural network output tested on case 364 with PID 209 "zeroed-out". Note that the

firing on the case 249 output unit is almost identical, the firings on case 7 and 9 slightly

higher, and the firing on the nominal/fault output unit a little lower, but nevertheless very
similar.

Other graphs from these tests occur in Section 4 of Appendix A, so that the effects

of separating out the repressurizing influence as seen through PID 209 are evident.

In the context of the problem presented by case 457 (by venting/repressurizing

factors), however, another approach to sensor fusion can be incorporated in. It turns out

that there is a very simple deterministic sensor fusion method capable of catching all the

faults, for which case 457 presents no difficulties. It has already been pointed out in passing

that one way to combine all the features in a data sample is calculate their length, or norm

(the norm of a sample is its length as a vector in 24-dimensional Euclidean space, the

square root of the sum of the squares of all its feature values). Section A.5 of Appendix

A contains the very interesting results of doing this for all the cases and graphing the results.

The norms of the vectors in case 457 never go above 6.44. If one takes having a norm of

more than 6.5 as fault-determination, the following fault-declare times are obtained (and

there are no false alarms):
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Fault Declare Times

Case First > = 6.5 Analyst

225 255.52 255.52

249 337.16 320.32(330)

259 101.36 101.36

307 34.48 18.92(24)

331 232.44 232.32(232.40)

340 289.80 278.92(290.12)

364 225.48 204.32(217)

436 610.84 610.72(610.76)

Note that even case 173 is caught by this net. All its samples now seen as clearly

fault, three samples, would have been caught with a limit of 6.7 on nominal samples). For

the rest of the cases, a much higher limit would have caught the fault. In fact, in the

gradually developing cases, a limit of 10 would have caught the fault many seconds before

the time the engine was shut down on the test stand. The maximum norms for the cases,

given in the usual order, were the following: 8.28, 9.09, 21.27, 23.51, 11.31, 19.89, 13.17,

18.79, 17.26, 6.44, 3.61.

These graphs of norms (which are called "absolute values" by the graphing program)

have been very valuable in trying to choose fault-declare times. The norm is clearly a

powerful sensor-fusion tool, a tool that might well always detect the faults that the networks

with this current set of features can detect. But there might be other faults that these

features and the norms calculated from them might not detect; faults revealing themselves

through an increase in the noise level, for instance. Norms would clearly not be so helpful

with any set of features including some for which it would not be a large number that would

be indicative of the fault. The example of case 436 shows that if one took into consideration

not the norm itself, but the rate of change in the norm, one would notice the fault even
earlier.

There are many things one can deduce by computations involving the raw sensor

data, and many ways to combine and use the information derived. The same features (i.e.

properties of data) that can be used in deterministic methods can be used in neural

networks or expert systems.
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There is some art to using the norm as a sensor-fusion tool. To illustrate it, consider

the fact that the following set of features might be more appropriate as inputs into the norm
fusion:

. Smoothed raw PID value, cross-time-slice and cross-engine differences

factored out:

Let AvgSO(t) be the average of the PID value over the last 50 samples

including the sample at time t. Let

Avg50Diff(t) = AvgSO(t) - Avg50(t__),

where AvgSO(t__) is the average of the first 50 samples of the steady-state time
slice.

Then let

FeaSmooth(t) = AvgSODiff(t) / SD(AvgSODiff),

where SD(Avg5ODiff) is the standard deviation of Avg5ODiff around its mean.

. Rate of change feature.

Let Avg25(t) be defined like AvgSO(t). Let

AvgSlope25(t) - Avg25(t) - Avg25(t-1),

where t - 1 means the time one second ago (twenty-five samples ago).

Let

FeaSlope(t) --- AvgSlope25(t) / SD(AvgSlope25),

where the SD function is as before.
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. Immediate change feature.

Let Diff(t) = I PlD(t) - PID(t - .04) I. This is the absolute value of the
difference between the last two PID values. Then let

FeaDiff(t) = Dill(t) / SD(Diff).

For use in norm fusion when a decision is made on value staying above a

certain range for a specified number of samples, it might make more sense to
use the feature

FeaDiff(t) --- max(Diff(t) / SD(Diff), FeaDiff(tsmaller)},

t-2 ,_ tsmaller ,_ t

since the feature defined the first way might be expected to become smaller

almost immediately.

Notice that by always dividing by the standard deviation that has the same kind of

relation to the basic object being measured, all features being fed into the nrom are in some

sense comparable. If one wants them assigned different levels of importance in the norm,

they may be weighted in the desired way, very much as a neural network weights inputs.

It should be realized, however, that when a system is created for actual use, incorporating

large amounts of real data into the training data sets, the standard deviations that should

be used here - and elsewhere, for instance in any feature calculation, whether for norms or

otherwise - should be calculated separately for the different power levels of the engine.
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2.9 Other SSME Failure Detection Systems Netrologic Has Been Investigating

Concurrently with the work on neural nets that was described above, initial

investigations have been made into other approaches to fault detection:

preliminary investigations into the norm (Euclidean distance from the origin)

of the feature vector - or of the change in the length or rate of change of the

length of this vector, as indicative of a fault (see graphs 2.12.5); the use of

this data-fusion feature was discussed in detail at the end of Section 2.8 in the

context of the help it could give concerning the evaluation of case 457 data;

finding the "nearest neighbor" in terms of Euclidean distance from a point to

be evaluated; this method has had some success in discriminating between

fault and nominal data;

finding the vector that makes the smallest angle with the sample vector; this

method, which requires a great deal of refinement, as does the one just

mentioned, has also had a reasonable amount of success even at its current

stage of development;

counting the number of PIDs whose features are outside the range of values

observed in nominal data, or the number of features in each of several subset

ranges outside the range of nominal data. This is a "pseudo-redline"

approach; this is related to the SAFD approach;

use of a probabilistic neural net; the general approach is similar to what could

be called the "nearest neighbor" method;

determining an approximation to the convex hull of the nominal data perhaps

with the use of synthetic fault data, and calling nominal anything that occurred

inside it, deviant anything outside it.
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2.10 Recommended SSME Neural Net Investigation for the Near Future

The two items considered to be of highest priority are the investigation of the value

of additional features for fault detection and the approach to neural net design for engines

lacking failure data or which have not yet failed. For example, evaluating data from the

second generation SSMEs, of the in-flight data from these SSMEs, for instance, using

nominal/synthetic training sets is a promising approach. It is believed that the second

depends on the first, so the work on both should be carried out simultaneously.

A new approach to fault-typing can be made part of this work by having part of the

synthetic fault data generated by taking nominal samples and forcing one or more of the

features outside nominal range or out of synchronization with other PIDs, with the inclusion

of output units to record "PID X out of range" or "PIDs X and Y out of synchronization'.

Another approach depends even more strongly on new data, and, in particular, data

that has been very carefully analyzed. It is closely related to the approach mentioned of

dividing the current data into three categories, nominal, intermediate and fault. But this

approach could be taken further. The problem posed by the lack of fault data has been

mentioned frequently. Nevertheless, there is some data that is not being used that could
be called real fault data.

After every successful test firing, NASA analysts spend many hours examining all the

sensor data recorded during the run to find out whether the engine actually developed a

problem during the firing that was not noticed during the short period of time the firing

lasted. Sometimes problems of differing degrees of severity are found. If a continuous scale

for "engine problems" could be developed, with 10 or 15 categories, say, and a large amount

of data was classified according to this scale, and synthetic data were added to fill out the

top end of the scale, the network trained on such data would be evaluating the severity of

the fault it thinks it might be detecting, and giving its own fault-declare time, say when 8 is

reached on a scale of 1 to 10, or 12 on a scale of 1 to 15.

The NASA analysts whose help would be needed for 1he classification of such data

could also be helpful with the first item mentioned, determining the effect of different

feature sets on the discriminatory powers of the nets. For some of the first features that

should be looked into are the ones these analysts are using for their own evaluations of the

behavior of an engine during a firing. Some that Netrologic analysts consider valuable are:
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(an approximation to) the second derivative of the PID,

the number of oscillations, i.e. changes in direction of the motion of the PID value,

the standard deviation of the PID values over a group of consecutive samples,

the difference in PID values between the last two samples,

the difference between the maximum and minimum PID value over a group of

consecutive samples,

the difference between correlated PID values,

the norm of the sample vector, and properties of this quantity.
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3.1

SECTION 3

VALVE SIGNATURE RECOGNITION

Problem Statement

An ATLAS rocket includes some 150 valves of various types in its pneumatic system.

Each of these valves is computer controlled, and, in order to confirm correct operation, i_

computer monitored as well. This means that each valve must be accompanied by a remote

sensor, which must itself be wired back to the controller. The sensors add significantly to

the cost and time required during manufacture of the rocket because the valves-plus-sensors

are substantially more expensive than the valves alone would be, and because the extra

wiring needed to return the sensor data to the controller requires approximately 1.5

man-hours to install for each valve, plus several additional miles of wire to connect all the

sensors. Furthermore, the sensors are not reliable. The vast majority of valve-failure

readings are due to a failure in the sensor for the valve, rather than the valve itself. At this

time there is no facility available to double-check the sensor's operation, and thus determine

if a valve-failure signal is a true failure or a false reading. The only means of handling such

problems is to manually check the system, resulting in substantial downtime while the check

is being performed.

The goal of this investigation was to determine if neural network technology could

assist in some or all of the above problems. Specifically, the major thrust of the effort was

expended in determining if a neural network could monitor current transients along the

power-bus to identify valve operations. If this were possible, then, all the individual wirings

from sensor to controller could be replaced by a much smaller number of power buses. It

was hoped that neural nets, which have the advantage of being highly robust both in their

recognition of noisy and incomplete patterns, as well as in their ability to operate correctly

even given significant hardware damage to themselves, might be able to help with this

difficult problem in rocket-monitoring, where high reliability is of special importance.

The operation of a neural network in such a situation might be something like the

following. A command would be sent by the controller to a valve, and the current transient

that came back along the power bus would be evaluated by the network. The network

would have to be able to distinguish between at least the following kinds of signatures:

valve is opening,

valve is closing,

valve attempting to open is stuck closed,

valve attempting to close is stuck open,

valve has weak spring,

valve has spring that is too strong.
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In addition, it would be helpful if the neural net could handle the task of telling

which valve was sending the current transient (for example, in case one valve started

operations without commands from the controller, or if an expected current transient came

slightly out of the order of commands, perhaps due to one not having arrived at all). And

the weak spring and strong spring valve problems might be hard for the net to determine

without having learned the normal spring signatures for an individual valve (it was found

that valve signatures varied a great deal from valve to valve, even among valve of the same

manufacturer).

Note that a neural net could be expected to be able to help with distinguishing

between a failed valve and a failed sensor, because the current transients received along the

power-bus could be expected to be very different in the two cases (for instance, if the above

list included all the kinds of signatures that could be expected to come back when a sensor

was functioning, nothing returning along the power bus, or something returning that was

different than one of the expected healthy operation or failed valve signatures could be

assumed to indicate a failed sensor).

The investigations described in this report were carried out as follows. First, data was

collected in the form of current signatures from ATLAS-rocket valves installed on a

pneumatic test bench. This data was analyzed in terms of the expected difficulties neural

nets might have in making the required distinctions, and an appropriate neural net structure

for the kind of task was developed. To test the conclusions that had been drawn, neural

nets were constructed to carry out what was estimated to be one of the more difficult tasks,

the identification of which individual valve was sending a signal. For this first effort, the

networks were trained only to identify the valve-open or valve-closed signature of a valve.

This data was then used as training and test data for two neural networks (one to

distinguish between valves sending a valve-open signature, the other to distinguish between

valves sending a valve-closed signature). The neural networks were then evaluated for item

recognition with respect to valve identification (and also with respect to type of valve).

Based on the understanding resulting from these investigations, this section of the

report presents an assessment of neural network technology applicability and commercial

potential for this and similar tasks.

3.2 Technical Background

The "Smart Built-In-Test', or Smart BIT, pneumatic bench provided invaluable valve

current signature data for these investigations. This complex hardware/software construct

has a mockup of a pneumatic system including pressure control valves, pressure control

regulators, relief valves, pneumatic actuated valves, purges, and a pressure storage vessel.

A common electric shunt is provided to monitor all the valves on the bench. Figure 3.1

shows the schematic representation of the prototype test bench.
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Figure 3.2 shows a photograph of the test bench and the computer and control and

monitoring electronic hardware. The control software which activates all the proper valves

and instrumentation for a particular test and provides real-time on-screen color graphics

plotting the pressure, temperature, current, voltage, frequency, or other data of interest vs

time as well as a display of pertinent engineering data (maxima, minima, deltas, etc.) was

written in the ASYST control language. A sample of the program code used to collect the

current signature data is given in Appendix B, Section B.6.1.1.

Early work with this bench had involved the capturing of signatures of different kinds

from three types of solenoid valves, the Marotta, Circle Seal, and Wright Component valves.

The most significant findings were that the kind of signatures mentioned in the previous

paragraph were easily differentiated by the human eye, but that the quality of the signature

was representative of the quality of the valve. More explicitly, the low-cost valves were very

inconsistent in their behavior from cycle-to-cycle, while high quality flight type valves such

as those used in the Centaur RCS (Wright Component valves) were extremely consistent.

The variables found to be the most repeatable were actuation time (time for the

valve poppet to shuttle), and inductance (induced voltage generated by the poppet passing

through the solenoid coil). Inductance is recognized by the dips seen in the current

signature. To see if faults could be readily identified, a Circle Seal valve was locked up. As

expected, the familiar dip in the current trace was not present. Sticking/friction was

simulated using the Wright Component valves by way of increasing pressure on the pressure

assisted seat. (Mechanical faults to the valves were not developed beyond this point as
Wright Component valves are an all welded construction, and the Marotta valve was too

erratic for developing a data base.) A potential concern at the beginning of valve signature

investigations with the pneumatic bench was the possible effect of valve temperature.

Testing concluded that temperature has little effect except when a valve was first actuated

after a long period of being off.

Based on these results from the Smart BIT IRAD, the valve data was determined to

be distinct enough that a neural network should be able to determine the state of a valve,

and possibly which valve opened or closed. Thus the early work with the Smart BIT IRAD

that showed a larger variation among individual valves and between valves of different

manufacturers than expected, while perhaps discouraging to those who were hoping for more

uniformity to make replacement of valves involve less complications, is advantageous for the

purpose of distinguishing between valves in the context that has just been discussed of using

a neural network to identify specific valves and their actions. And neural nets can easily be

retrained to recognize the new signature when a valve is replaced by another.
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Figure 3.2. Photograph of Smart Built-In-Test Pneumatic Test Bench
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3.3 Test Design

To understand the test design, it is necessary to understand the three types of valves

on the Smart BIT test bed. Each of these valve types also has several parameters that can

be changed to modify their response and artificially induce failures. The three valves are

illustrated in Figures 3.3, 3.4, and 3.5 below.

3.3.1 Valve Types

3.3.1.1 Circle Seal Valve

Five Circle Seal valves were used during the test. These valves, arbitrarily designated

as "type 1," have a return spring and an adjustment screw that controls the tension of the

spring.

I TestsScrew Adjustment i

Adjustment Screw
Return Spring

Micro Switch Assembly

Micro Switch Plunger

Normally Open

Common

Normally Closed

Coil

Figure 3.3. A Circle Seal valve.

3.3.1.2 Wright (REM) Valve

Three Wright (REM) valves were used during the test. These valves were arbitrarily

designated "type 2." They are actual flight valves, and are in a sealed, contained unit. None

of these valves were disassembled, and no interior detail design was available to illustrate

them. The Wright valves are exceptionally fast valves, with a response time that is

considerably faster than either the Circle Seal or Marotta valves.
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I Failed OpenRemove Spring

Return Spring

Tests

Weak Spring
Normal Spring
Strong Spring

Coil

I Failed Closed !Insert a Block

Normally Closed

Figure 3.4. The Marotta Valve.

3.3.1.3 Marotta Valve

There were two Marotta valves on the test bed, designated as "type 3" valves. These

valves have a return spring that can be varied by substituting the spring with one with a

weaker or stronger spring constant. In addition, the valve action can be artificially blocked

by placing a physical barrier that prevents the valve from closing completely. Such a

condition is called a "failed closed" because the valve failed to close properly. A "failed

open" state can also be induced in the valve by removing the return spring entirely, thus
preventing the valve from opening on command.

The electromagnetic operation of all of these valves is shown in detail in Figures 3.5

and 3.6. In essence, the change in current in a coil winding around a magnetic coil reverses
the direction of the induced magnetic field, thus causing the core to "pop up" out of the

central winding (Figure 3.5). This causes the return spring to compress, so that when the

electromagnetic conditions are changed by a "close" command, the poppet core is forced
back down into the windings (Figure 3.6).
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Figure 3.5. Applying a current through the coil windings causes the poppet to move,

which generates a reverse current in the coil.

Return Spring

Poppet

Movement

Coil

Figure 3.6. The compression of the return spring when the poppet core pops up provides

the tension necessary to force the poppet back down into the coil once the

electromagnetic conditions permit.
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1. a change of state

2. the direction of the change of state

3. the current level of the change in
state

4. from simple to complex state change

5. different frequency ranges of the
state changes

6. specific valve characteristics that
make it unique from the other valve
state changes

levels of identification

L lr
difficult

t

Figure 3.7. Sample valve signatures showing relative ease of identification.

3.3.2 Signature Characteristics

Given the above valve types and inducible failures, the signature curves themselves

become of interest. Figure 3.7 illustrates several key signature features that can potentially
be used to determine the state of the valves on the test bed.

The first determination to be made is whether or not a valve has changed state. A

typical signature changes from a flat curve to rising curve as shown in the figure. This

signature would occur if a valve opened. When a valve closes, the curve is a shorter, falling

curve from the open-state current level to a zero current level. Generally, it takes less time

for the valve to close than it does to open.

The second determination is to decide what happened (i.e., whether the valve opened

or closed) by observing the slope of the signature. A rising curve indicates a valve opened;

a falling curve indicates the valve closed.

The third determination to be made is to find the current levels for the given state

change. This is the first indication that can be used to distinguish valve types. Typically, a

Circle Seal valve requires less than 500 milliamps to open; a Wright (REM) valve requires

nearly 900 milliamps, and a Marotta requires more than 900 milliamps.
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The fourth signature characteristic to be determined is whether the signature curve

is simple or complex. During the time needed for a valve to actually open or close, the

action is not always smooth. For example, the current necessary to start the poppet moving

(i.e., overcome its initial inertia) may be fairly high, but the current may drop sharply once

it has begun to move. Similarly, other effects such as the strength of the spring, spring

"bounce _, friction, and other factors, may all change the signature curve from a smooth

sigmoidal shape to a complex curve. Ideally, these characteristics can be used to distinguish

between valve types or even between valves of the same type.

A fifth characteristic is the speed at which the curve characteristics occur. If the

signature is taken over a f'Lxed time period of, say, 75 milliseconds, a Wright valve can be

expected to act within 20 milliseconds, while a Circle Seal may not fully open or close for

nearly 70 milliseconds. The Marotta valves typically take an intermediate amount of time
to act.

Finally, all the previous characteristics combined provide a unique valve signature

that distinguish each valve from any other.

Of the signature types noted, it was determined that the first two were of such

triviality that they were inappropriate to use as training material. Instead, the focus of the

effort was to determine how many of the remaining four effects could be reliably detected

by a neural network.

Figure 3.8 illustrates the general characteristics of a typical current signature for each

of a valve-open and valve-close command, with characteristic features of each marked.

3.3.3 Signatures for the Valve Types

Data was collected for each of the above three valve types, to determine if their

characteristic signatures were sufficiently distinct to be used as a determining characteristic.

Figures 3.9, 3.10, and 3.11 show typical signatures for the Circle Seal, Wright, and Marotta

valves respectively. Even a casual comparison of the curves reveals the differences in

signature between the valve types.

3- 10

!-



Figure 3.9.
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Figure 3.8. A typical current signature with features marked.
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Typical Circle Seal signatures for valve-open (increasing current)

valve-close (decreasing current) state changes.
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Figure 3.10. Typical Wright valve signature curves. Note the higher current and shorter

response time compared to the Circle Seal valves.
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In figure 3.12, all three valve types are superimposed on a single graph so that the

differences are clearly delineated.
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Figure 3.12. Signatures from all three valve types are superimposed to delineate the
differences between them.

It should be noted here that one of the Circle Seal valves had a signature that varied

significantly from the other valves of the same type. This valve's signature is shown in Figure

3.13. It is not clear why this valve is so different from the other Circle Seal valves; no

failures or misadjustments were associated with this valve's signature. To see more clearly

just how different this valve's signature is from the more typical Circle Seal signature, Figure

3.14 graphs the signatures from both the anomalous valve (#15) and a more typical valve
(#12).
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Figure 3.13. One Circle Seal valve had an anomalous signature.
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Item Size

1. 128 byte

2. 2 byte

3. 2 byte

4. 2 byte

5. 2 byte

6. 2 byte

7. 2 byte

8. 2 byte

9. 4 byte

10. 4 byte

Table 3.1 Data Run Header Format

Type Explanation

string

mt

int

int

int

int

int

int

real[array]

real[array]

time, date, comment about the test

failure code

valve number

open time (100 msec normally)

open samples (400 normally)

close time (100 msec normally)

close samples (400 normally)

number of invisible (unsaved) runs

open data of size [open samples] in length

close data of size [close samples] in length

Num Name

Table 3.2 Valve Number and Failure Code Clarification

Type Comments

12 evl Circle Seal

13 ev2 Circle Seal

15 ev4 Circle Seal

9 ev6 Circle Seal

8 ev5 Circle Seal

5 reml Wright

4 rem2 Wright

11 rem3 Wright
14 ev3 Marotta

13 ev2m Marotta

solenoid on the bottom

solenoid on the bottom

solenoid on the top

solenoid on the top

solenoid on the top

two valves tied together

two valves tied together

two valves tied together

slightly different model than the next one

the wires are removed from ev2 and attached to ev2m

(the ev2m valve is not in the system but is just laid on

top of the bench - this is also the valve that was taken

apart and used in evaluation of the effects of failures on

the current signatures)

3.3.4 Smart BIT Data Collection and Format

The current signature samples were written to a series of files with both the open and

close data in the same file. The data collection program (detailed in Appendix B,

Section B.6.1) stores each of the collected data runs in a separate file with the number of

the run and the number of the valve as part of the file name. The data files are formatted
with the information listed in Table 3.1.

3 - 15



Within the valve's current signature data files explanations in Table 3.1, two data

items still need more clarification. The two items are the valve number and the failure code

that was used. The valve number is the hardware bit number that is used to control the

activation of the valve on the test bench, and so a cross correlation of the valves in Figure
3.1 with the type and class of valve needs addressed. This data is listed in Table 3.2.

The failure code is an indication of the deviation from the normal state of the valve.

This change in status is indicated with a value other than zero in the failure code of the file.

Such a change may be that the valve has been failed open (i.e., failed to open) or failed

closed (i.e., failed to close), the spring has been replaced by a weaker or stronger spring

than normal, or that there has been pressure introduced into the system, or even that the

data has been stored in a different format than originally stored. The list of failure codes

that were assigned are listed in Table 3.3.

Table 3.3 Failure Code Meanings

Num Description

0

1

2

3

9

10

11

12

13

14

15

16

17

18

none (no failure - normal operation)

failed open (no return spring)

failed closed (shim or block inserted to stop valve from operating)

week spring (high friction on return)

raw data (no failure)
100

150

200

250

300

350

400

450

500

ps_g

ps=g

pslg

pslg

pslg

pslg

pslg

pslg

pslg

In order to ensure that the valve data were usable, several test runs were made

before the collection of data was started. During these test runs it was noted that the current

signature drifted as each of the consecutive tests were executed. The data collection program
was set up to make "invisible runs," which were not stored into data files. It was found that

the drift did indeed stop after such a sequence of runs, stabilizing the valve's signature. The

invisible runs are performed in the same way as the rest of the runs except that their
signature data were not stored.
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3.3.5 Neural Network Design

The networks used for this project were backpropagation networks, which have been

demonstrated to have superior pattern recognition capabilities over a wide variety of

applications. To reduce programming

('Artificial Neural Systems Simulator'),

program was written to convert the raw

listing for this program is in Appendix B,

effort a commercial simulator, SAIC's ANSim

was used for training and testing. A C-language

data into a format that ANSim can process; the

Section B.6.2 of this report. The backpropagation

networks were three-layer networks with 300 neurodes in the input layer, 9 neurodes in the

output layer, and 25 neurodes in the middle layer.

Preprocessing of the input data consisted primarily of minor format changes. Each

of the signatures was initially in a separate binary data file, with header information

identifying the valve number, run information, and so on, as described in Appendix B,

Section B.6.1. For ANSim to train the network, a collection of runs had to be gathered into

a single file, with a special header placed at the top; ANSim is also rather particular about

the format of the data in the training file. Data was collected for 400 measurements over

100 milliseconds in all cases; however, to reduce the dimensionality of the input layer of the

neural network, only the first 300 measurements (75 milliseconds of data) were actually

included in the input patterns used for training and testing. Additional preprocessing was

performed to scale the input patterns to a -0.5 to + 0.5 range. Since the raw data had an

actual range of approximately 0 to 100 ma., this was done by dividing each current value by

100.00 to give a number between 0.0 and 1.0, and then subtracting 0.5 to get a number in

the final range. In the case of the valve-close data, an additional normalization operation,

performed by the data normalization routine within ANSim, was also done. This normalizes

(removes the mean from) and scales the input values across the entire file. The

normalization values were saved in a special data file, and all test pattern files were

normalized using these same values.

The output format of the data was arbitrary, and was a 9-element binary pattern. The

first three (leftmost) elements designated the valve type; the next four designated the valve

number in binary; and the last two indicated whether the pattern was a valve-open or

valve-close state change. (Since two separate networks were ultimately used for valve-open

and valve-close, these last two elements were the same for all patterns presented to each

network. In other words, each network either always saw a "1 0" pattern or a "0 1" pattern

for these two elements.)
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Table 3.4. The output pattern element definition (all elements are either 0 or I)

Wrigh,[ M o,,alv vo"l v ve"l w,vo.[ v 'vo"l openIC'o.o 
Example: Circle Seal, valve #12, Valve-Open pattern

3.4 Test Results

Two neural networks were trained to recognize the valve signatures from the data

collected from the test bed. One network was trained to distinguish between signatures for

a valve-open state change (rising current) and another was trained to distinguish between

signatures for a valve-close state change (falling current).

3.4.1 Training Procedure

Training data consisted of the first and last data collection runs from each valve used

on the Smart BIT test bed. For some valves, 20 test runs were collected; for others, 40 test

runs were collected. In either case, the first and last test runs for each of the ten valves were

included in the training set. The rationale for this approach was that the first "cold" run and

the last "warm" run for a given valve ought to span the expected behavior of that valve.

(This expectation was confirmed by informal observations of the collected data.) Test

pattern sets were derived from the intermediate runs. For example, if a given valve had 20

runs made on it, the training data for that valve consisted of runs 1 and 20; test sets for that
valve included runs 5 and 15.

Training was continued until the total RMS error for all twenty patterns in the

training set was less than or equal to 0.10. Since each of the 9 output elements has an

output range of 1.0 (-0.5 to + 0.5), and since there were 20 training patterns for each

network, this error level implies a total error of approximately 0.05%. The valve-open

network trained in approximately 250 passes through the training set to achieve this

performance level. The valve-closed network required approximately 2800 passes to train

to the same level of competence. The difference in training requirements arises from the

relatively subtle distinguishing features between the valves for the latter case. In essence,

as can be seen by Figure 3.12, there is much more variation between valve types for the

valve-open situation than there is for the valve-close situation, making the latter much more
difficult for the network to learn.
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The close-valve network was trained with noise on. This means that the network was

presented with slightly noisy versions of the training patterns every pass through the training

set, rather than the exact patterns themselves. In effect, this means that the network literally

never saw exactly the same pattern twice, since in each pass the noise is randomly and

dynamically added to the input patterns.

Both networks rapidly learned to distinguish between the three valve types; more

than half of the training time was used to distinguish the specific valve number for each

pattern. The Wright valves were the most difficult for the networks to learn in both cases.

This is most likely due to their very fast response time. Because they responded so quickly,

the "granularity" of the signature data is much greater for these valves, resulting in a loss of

fine detail in the signature curves. This could be corrected by taking readings more

frequently, particularly in the first 20 milliseconds of the curve. As a result, these patterns

are extremely difficult for the network to learn.

3.4.2 Test Procedure and Results

Both neural networks performed exceptionally well during testing. To assess the

networks' responses, the training data set and the test data set for each was processed

through the networks at a variety of noise levels, from 0% noise to 50% noise. "10% noise"
in this context means that a random number between 0.10 was added to each element of

the input pattern before processing it through the network. Since the dynamic range of the

input data is restricted to the range -0.50 to + 0.50, or a total of 1.0, this is equivalent to

adding error bars to each pattern element. In the case of 10% noise, these error bars would

be the equivalent of plus or minus 100 ma for each reading of the pattern. Notice that as

shown in the signatures of Figure 3.12, many of the features of the curves had a total

magnitude of approximately 50 to 100 ma. Thus, even 10% noise imposed a significant

penalty on the network trying to distinguish the curves from each other.

Each network's responses were evaluated as "correct" "incorrect" or "not sure" for

each pattern processed. A "correct" response was assigned only if every element of the

network's output matched the desired response in color. In other words a desired + 0.5

response required an output that was at least + 0.15 or greater, and a desired -0.5 response

required an output of at least -0.15 or less. On the ANSim display screen, responses more

positive or more negative than this are displayed with a varying color scale that shows

definitely red (for a positive output) or blue (for a negative output). When the network's

output was between -0.15 and + 0.15, ANSim produces a black-and-white indication; these

were marked as "not sure" if only one such output pattern element had the black-and-white

indication and if all other pattern elements were correctly designated by color. All network

responses that were not "correct" or "not sure" were marked as "incorrect."
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Tables 3.5, 3.6, 3.7, and 3.8 summarize the networks' responses. Tables 3.5 and 3.6

present the Open Network's test results for the training and test data respectively. Tables

3.7 and 3.8 present the Close Network's test results for the training and test data

respectively. The first column of each table lists the noise level for that pass. The second

column lists the number of times (out of 20 patterns in each file) the network produced the

incorrect valve type (type l=Circle Seal, type 2=Wright, type 3=Marotta); the third

column lists the number of times the network produced the incorrect binary valve number.

The last column lists the file name on the disk provided (Disk #3) that contains the details

of the network's responses for that pass. When the network had one or more "not sure"

responses, those are listed in parentheses beside the number of errors. Thus, in Table 3.5

at the 5% noise level, the Open Network has a Valve No. Errors entry of "0 (1)"; this means

that the network made no errors, but had one pattern in which the valve number had one

pattern element that was black-and-white. Two or more black-and-white pattern elements

counted as an "incorrect" response.

Table 3.5

Open Network's Performance with Training Data

Noise Level Valve Type Errors Valve No. Errors

Noise Level

Results File Name

0% 0 0 O00TRN.RES

5% 0 0 (1) O05TRN.RES
10% 0 1 (1) O10TRN.RES
15% 0 2 O15TRN.RES

20% 0 6 (1) O20TRN.RES
25% 0 6 O25TRN.RES
30% 1 9 O30TRN.RES
50% 1 10 O50TRN.RES

0%
5%
10%
15%
20%
25%
30%
50%

Table 3.6
Open Network's Performance with Test Data

Valve Type Errors Valve No. Errors Results File Name

0
0
0
0
0
0
0
2

0 O00TST.RES
0 O05TST.RES

2 (1) O10TST.RES
3 (1) O15TST.RES
6 (1) O20TST.RES
8 O25TST.RES
7 O30TST.RES
13 O50TST.RES

Table 3.7

Closed Network's Performance with Training Data
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NoiseLevel Valve Type Errors Valve No. Errors
0% 0 0

5% 0 0 (1)
10% 0 0
15% 0 6 (1)
20% 0 9 (2)
25% 2 6 (1)
30% 3 9 (1)

Results File Name
C00TRN.RES
C05TRN.RES
C10TRN.RES
C15TRN.RES
C20TRN.RES
C25TRN.RES
C30TRN.RES

Table 3.8

Closed Network's Performance with Test Data

Noise Level Valve Type Errors Valve No. Errors Results File Name

0% 0 0 C(xYrST.RES

5% 0 0 (2) C05TST.RES
10% 0 4 (1) C10TST.RES
15% 0 6 (1) C15TST.RES
20% 0 5 (1) C20TST.RES
25% 0 (1) 7 C25TST.RES
30% 2 II (1) C30TRN.RES

No errors were made by either network on any of the training or test patterns when
noise was not present. In fact, both networks performed admirably on both the training and
the test data sets when noise was limited to 10% or less. Recalling that this level of noise

is the same as placing error bars on each measurement of 100 ma of current, it is

astounding that the network is able to correctly determine both the type and number of the

valves so well with this level of variation. Even more surprisingly, the networks were

generally able to determine the type of valve with noise levels of 25% to 30% or more. The
Open Network was even able to correctly distinguish the type of valve with noise levels of
50% ( 500 ma uncertainty!) more than nine times out of ten. Given that the scale of the
features in the signature curves are on the order of 50 to 100 ma in size, this is an
exceptional feat.

The included network disk (Disk #3) contains the result files for all these tests. The

format for these files is described in Appendix B, Section B.6.2 of this report.

Overall, the results of this project have been extremely heartening. It is clear that
neural networks can indeed learn to "read" the power bus transients and determine what

happened, what kind of valve it happened to, and which specific valve it happened to. This

has great implications for reducing the cost of ATLAS rocket valve monitoring systems. At
the very least, it may provide an independent method of confirming the accuracy of
valve-sensor readings.
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3.5 Future Research Directions

In the process of conducting this research, a large number of questions remained

unanswered. These questions are appropriate topics for future investigations. In some cases,

enough data was collected on this project to begin to explore them; in others, more Smart

BIT test data will be required.

3.5.1 Failure Determination

If the valve fails, can the fact that it failed, plus the kind of failure be distinguished

by a neural network? In this regard, for example, can poor performance of a valve due to

excessive wear, abrasions, or friction be distinguished? Can a network determine that the

valve coil has shorted? Some data was collected that indicates the changes in the valve's

signature in such events. The figures below illustrate these changes. Figure 3.15, for example

illustrates a Marotta valve with a rather weak return spring. The signature is somewhat

different from that of a Marotta valve with a medium-strength spring (Figure 3.16), or that

of a Marotta valve with an unusually strong spring (Figure 3.17).
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The signature of a Marotta valve with a weak spring (low spring constant).

No other failures for this signature.
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Figure 3.16. A Marotta valve signature with a medium-strength spring.
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The signature of a Marotta valve with a strong spring.
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Figure 3.18. This chart summarizes the differences in signature for a Marotta valve with

variations in the strength of the spring or with deliberate failures induced.

Figure 3.18 illustrates all three spring characteristics (strong, medium, and weak) for

the valve-close case on a single graph to more clearly delineate the differences in the

signatures. This plot also includes signatures for cases where the return spring was entirely

missing (thus preventing the valve from closing properly), and when a deliberate blockage

was introduced to keep the valve from opening. As can be seen in the figure, the differences

in the curves are often small between individual cases (as, for example, the difference

between the opening or closing of the valve with a strong vs. a medium spring). On the

other hand, it may be possible to train a neural network to distinguish even these subtle
differences.

Another kind of variation can be the simple differences between the adjustment of

each valve. Data was collected on various settings for the adjustment screw of Circle Seal

and Marotta valves. The figures below (Figures 3.19 through 3.21) illustrate how this

adjustment can substantially alter the shape of the signature curves.
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A Marotta valve with the screw adjustment tweaked has a remarkably altered

signature curve.
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A Circle Seal valve's signature becomes quite complex when the screw

adjustment is altered.
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When the Circle Seal valve's screw adjustment is too extreme, the valve fails

to operate. This is the resulting signature.

Figure 3.22 illustrates more generally how a Circle Seal valve's signature can change

depending on the kind of adjustment or failure that it experiences. The challenge would be

to train one or more neural networks to handle these cases and correctly interpret the

signature data.

3 - 26



E
m

m
*m

4.,,I
e"

L-
X--

e,j

450

350

25O

150

5O

I

I I

50 70 90

Time Milliseconds

Figure 3.22. A Circle Seal valve's signature curve can change dramatically as failures or

misadjustments occur.

3.5.2 Failure Prediction

Another key question that needs further investigation is that of whether a neural

network could be used to actually predict valve failures by noting a trend in the signature

data. No data was collected on this directly, but it was noticed that signature curves tend to

slowly trend from their "cold start" position to a final "warm" position. It might be possible

to train a network to notice when a valve's operation was beginning to move into

unacceptable areas. This would permit reliable early warning of such failures before they

actually occur and potentially provide a dramatic savings.
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3.5.3 Temperature Effects

While taking data for this report it was noticed that there were some variations of

a valve's signature as it warmed up. Figure 3.23 illustrates a typical case for a Marotta valve.

The valve-open signature is slightly faster when the valve is cold than it is when it is warm.

The valve-close signatures are all but indistinguishable. This leads to the question of

whether such subtle differences can be trained for in a neural network. If so, could the

network be used to help determine the temperature of the valve or the fluid flowing through
it?
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Figure 3.23. The signature of a Marotta valve varies slightly as it warms up under use.

The curve slowly moves from the cold position to the warm position and then
stabilizes there.
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3.5.4 Pressure Effects

Yet another possible area for future research is how pressure affects the current

signature of the valve. Some of the data recorded, shown in figure 3.24, shows such effects,

and the possible implications are fascinating. For example, could a neural network be
trained to estimate the actual pressure at the valve? If so, could this be used to confirm or

refute other sensor readings? Or even replace them entirely? This offers the potential of,
at a minimum, providing an independent means of confirming sensor data that does not

require either additional (expensive) sensors, or additional wiring on the rocket. Since neural
networks have been shown to be excellent at functional mapping applications, the likelihood
is that research in this area would be very fruitful.

Other questions of great interest in this regard include: if a network could be used

to determine pressure, does the fact that the line is being vented affect the current

signature? What effect does having pressure on only one side of the valve (as opposed to
on both sides) have on the signature? Can a network detect the difference?
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Figure 3.24. The effects of pressure at the valve are marked and highly distinguishable.
It seems likely that a neural network could be trained to estimate pressure
at the valve from the valve's current signature.
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3.5.5 Multiple Valve Signatures

Yet another area that must be investigated is the processing of multiple valve actions

that occur simultaneously• Data was recorded from a Circle Seal and a Marotta valve that

were actuated (both to open and close) simultaneously• Figure 3.25 records the result of this

brief experiment. The upper curve shows the mathematical sum of the individual curves of

the two valves in question, the lower curve shows the actual measured result, clipped by the

sensor's maximum range of 1000 ma. The two curves are virtually identical. The question,

of Course, is whether a neural network can be trained to understand such complex curves

and correctly determine that two separate valves are acting•

Along with this question is whether a network could evaluate failures from such

complex multi-valve signatures. If one of the two valves has a failure, can the network detect

and identify both the fact that a failure occurred, and which valve failed?
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The signature of two valves acting simultaneously is the mathematical sum

of the two individual signatures, clipped by the maximum range of the sensor.
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3.5.6 Gravity Effects

Another question that occurred to us was what effect gravity plays in the current

signature. If the valve poppet must pop up instead of down, is there a significant change in

the current? Preliminary data is illustrated in figure 3.26. In this figure, a Marotta valve was

operated upside down. Only slight effects were noticed (mostly in the form of a faster

response) compared to rightside up operation. Still, this was only a single trial; it is not clear

if this result extends to other valve types or orientations. Does a valve at a 45* angle

operate differently, for example, than one vertically placed? What about a horizontal

position?

Preliminary observations during testing of Circle Seal valves indicates that those

valves may not be so insensitive to gravity. Of the five Circle Seal valve, one was extremely

slow and had an anomalous signature reported earlier. The other four were grouped into

two pairs, each pair having very similar signatures. The valves appeared to produce similar

signatures based on their orientation (poppet up vs. poppet down)

Time Milliseconds

Figure 3.26. A Marotta valve operated upside down shows very little change in its

signature.
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3.5.7 Valve Consistency

It also appears that the valves may experience an effect similar to hysteresis in which

the signature experiences a permanent change after an artificially induced failure is included

and then removed from a valve. This implies that a network may have trouble over the long

run in correctly identifying individual valves unless some form of on-line training can be

maintained. More research needs to be done in this regard.

3.5.8 Conclusions

As can be seen from these brief notes, a great deal more work needs to be done with

this project before solid conclusions about the usefulness of neural networks can be drawn.

Nevertheless, it is felt that their potential as a valve-monitoring system for the ATLAS

rocket has been demonstrated. While more research is needed, it seems clear that neural

networks have a strong potential to both reduce the installation and equipment costs of the

pneumatic system, and also to improve overall rocket reliability by reducing the reliance on

fragile sensors.

3 - 32



SECTION 4

RF GAUGING OF CRYOGENIC FUEL TANKS

USING NEURAL NETWORKS

4.1 Problem Statement

The problem addressed by the work described is this section of the report is that of

gauging the quantity of subcritical cryogenic propellant in a metallic tank. The approach

taken is based on measurement of the electromagnetic resonant modes of the fuel tank

cavity, and has potential applications to microgravity propellant gauging.

The uniform addition of a dielectric fluid (i.e., a propellant) changes the resonant

modes of the cavity of a tank in relation to the fluid density according to:

(1)

Where cn is the dielectric constant of the fluid, f0 is the resonant frequency for

the empty tank, and fn is the resonant frequency for the non-empty tank.

As a result of this, measurement of changes in the resonant frequencies can be used

to calculate the amount of mass in the tank. Specifically,

(2)

where m is the mass, and A and B are constants.

Although Equation 2 provides an accurate means of measuring a uniformly

distributed propellant mass, the unpredictable clumping of the liquid propellant in a gravity-

free environment complicates the problem significantly under nonuniform conditions. In

particular, spurious resonances arise and the measured resonances vary depending on the

distribution of the cryogenic fluid and the locations of the signal sensing antennas.
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Thus, the key to using the relationship expressedin Equation 2 to provide a reliable

and accurate mass gauging system must be a technique which can correctly associate

measured resonances under these conditions with the modes of an empty tank. The method

discussed in this section of the report will that of using neural networks.

4.2 Experimental Data

Measurements were made of RF resonances in the 300 - 1000 MHz range using

various antenna positions and distributions of simulated propellant masses. Wax was used

to simulate the propellant because its dielectric constant is similar to that of cryogenic fluids

at zero gravity. For each antenna, the resonant center frequencies, amplitudes, and

qualitative measures of the line widths were recorded. The qualitative descriptions of the

resonance widths as given in the left-hand column of Table 4.1 (here N stands for "narrow"

and VVB for "very very broad") were quantized into the 7 numerical categories listed in the

right-hand column of Table 4.1.

A total of 37 mass cases were measured, as summarized in Table 4.2. A number of

the cases were missing data from one or more antennas.

Wave Code

Notation

N

NB

B

BB

BBB

VB

VVB

Numerical '

Weight

16.1

9.3

5.0

3.1

2.2

1.8

1.0

Table 4.1. Classifications of Resonance Line Widths.
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4.3. Approach 1 - Frequency Data Only

Several different approaches were taken to this problem, based on the nature of the

data fed into a neural net to be trained to make estimations of mass. The first approach

used only the frequencies that had been recorded as being the resonant frequencies of the

filled tank. In this case, the 330 to 880 MHz band of these frequencies was divided into

1097 sub-bands of length .5 MHz each. A net was constructed with 1097 inputs, one hidden

layer containing two units, and a single output unit. The inputs consisted of a string of 1097

values corresponding to the sub-bands of the 330-880 range, each value of which was either

zero or one, the value being one ifa frequency had been measured in the input's sub-band.

The output unit was trained to be the mass corresponding to the inputs scaled so that the

actual target outputs ranged from .1 to .9.

The full-scale error is defined to be the difference between the correct and predicted

mass divided by the amount (mass) of the propellant in the tank when it is full, which in this

case is 138. An error of 5% in this term is considered permissible. A net was trained on
31 mass cases to within an error tolerance of 1%. The trained network was then tested on

five mass cases. The network had a worst case full-scale error of 7%, and an average full-

scale error of 5%.

4.4 Approach 2 - Mode Averaging Network

An important aspect of the problem is the representation of the input spectral data.

Two additional approaches were taken: first, the resonances, along with their amplitudes and

band-widths, were presented to the network directly, as described in this section. Second,

this information was converted into multi-channel spectra, as described in the next section.
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1
2

3
4

5

6

7
8

9
10

11

12
13

14

15
16
17
18

19

20

21

22

23

24

25

26

27
28

29

30

31

32

33

34

35
36

37

spray bar

Antennas

1 2 3 4 5 6 7 8 Mass

X

X

X

X

X X X

X

X X X

X X X

X X X
X X X

X X X

0.0

36.5

X X 36.5

36.5

10.863
10.863

10.863

10.863
21.863
21.863

21.863

21.863
32.932

32.932

43.873

54.804

36.05

67.55

103.65

138.25

78.5

78.5

78.5

78.5

60.25

60.25
73.35

91.60
91.60

91.60

105.05

X X 49.33

X X 49.33

X X 49.33
X X 49.33

X X 49.33

Table 4.2. Measured antennas and corresponding masses of 37 cases. Crosses

indicate missing antenna data. Case 2 was not used.
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In the direct method, a backpropagation network was presented with a sequence of

resonance lines as follows:

FrequencyA1

AmplitudeA1
WidthA1

FrequencyA2

AmplitudeA2

WidthA2

FrequencyA3

AmplitudeA3
WidthA3

FrequencyB1

AmplitudeB1

WidthB1

FrequencyB5

AmplitudeB5
WidthB5

The data from the antennas was broken into two frequency bands according to the

first two modes of the cavity (300 to 500 MHz and 600 to 900 MHz, corresponding to the

A's and B's in the above table, respectively). Thus, the network presented with this data will

learn to infer the shift in frequency, and hence the simulated propellant mass, from an

ensemble of mode frequencies. Only the sharpest two resonances were used (N and NB),

and the highest amplitude data was chosen for those resonances in the two bands.

The network was first trained by treating the antenna samples without regard to

antenna number. Thus, the input layer consisted of the 24 inputs described above,

corresponding to the readings from a given antenna at a particular point in time. The inputs

were connected to a single hidden unit as well as to the output unit. A linear output

element was used. The masses were linearly scaled into the range 0 to 1 by dividing by 150.
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The data was broken into three sets: a test file consisting of cases of mass 91.60,

78.50, 36.50, 21.86, and 10.86; a test file of the 5 examples of mass 49.33; and a training file

consisting of the remaining cases. The performance of the network after 13,000 training

passes is shown in Tables 4.3 and 4.4.

The average full-scale error of the network results shown in Table 4.3 is 8%.

Test Predicted T-P T-P T-P

Mass Mass T 138

10.9 19.8 -8.9 82% 6.4%

21.9 29.7 -7.8 36% 5.6%

36.5 40.6 -4.1 11% 3.0%

78.5 57.1 21.4 27% 15.5%

91.6 79.0 12.6 14% 9.1%

Table 4.3. Performance of mode averaging network for

individual antenna presentations. Predicted masses are

averages for eight antennas. (This network has 24 inputs, 1

hidden, 1 linear output, inputs connected to outputs, 13,000

passes.)

Test Predicted T-P T-P T-P

Mass Mass T 138

49.3 66.4 -17.1 -35% -12.4%

39.3 68.0 -18.7 -38% -13.6%

49.3 30.0 19.3 39% 14.0%

49.3 32.6 16.7 34% 12.1%

49.3 65.8 -16.5 -33% -12.0%

Average 52.5 -3.2 -6.5% -2.3%

Table 4.4. Performance of mode averaging network for

individual antenna presentations. Predicted masses are

averages for three antennas (2, 3, and 6). Network is identical

to the network used in Table 4.3. The average of the examples
is also recorded.

To improve the accuracy of the network, the network was next presented with

ensembles of 3 antennas (i.e., 72 inputs instead of 24). The results for a combination of

antennas (2, 3, and 6) are presented in Tables 4.5 and 4.6. The average full-scale error for

the examples in Table 4.5 is 15%.
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Becausethe performance of the network shownin Tables 4.3- 4.6degradedfrom the

single antenna to the multiple antenna cases, the network was retrained on a different

ensemble of antennas (2, 3, and 8). The results for this combination of antennas is shown

in Table 4.7. Note that the second test file could not be used since data for antenna 8 was

not available. The average full-scale error in Table 4.7 is 4%.

Finally, a slightly different set of test examples was extracted from the data. The
results for this case, which had an average full-scale error of 3%, are shown in Table 4.8.

Test Predicted T-P T-P T-P

Mass Mass T 138

10.9 21.2 -10.3 -94% -8%

21.9 15.0 6.9 32% 5%

36.5 97.9 -61.4 -168% -44%

78.5 57.6 20.9 27% 15%

91.6 88.3 3.3 4% 2%

Table 4.5. Performance of mode averaging network for

multiple antenna presentations. Masses are predicted from

antennas 2, 3, and 6. (This network has 72 inputs, 1 hidden, 1

linear output, inputs connected to outputs, 5000 passes.)

Network performance is much worse than that shown in
Table 4.3.

Test Predicted T-P T-P T-P

Mass Mass T 138

49.3 46.6 2.7 5% 2.0%

39.3 64.1 -14.8 -30% -10.7%

49.3 7.8 41.5 84% 30.1%

49.3 58.9 -9.6 -19% 7.0%

49.3 50.3 -1.0 -2% 0.7%

Average 45.5 3.8 8% 2.7%

Table 4.6. Performance of mode averaging network for

multiple antenna presentations. Masses are predicted from

antennas 2, 3, and 6 using network in Table 4.5.
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Test Predicted T-P T-P T-P
Mass Mass T 138

10.9 11.6 -0.7 6% 0.5%

21.9 24.9 -3.0 14% 2.2%

36.5 25.7 10.8 30% 7.8%

78.5 89.0 -10.5 13% 7.6%

91.6 90.0 1.6 2% 1.2%

Table 4.7. Performance of mode averaging network for

multiple antenna presentations. Masses are predicted from

antennas 2, 3, and 8 using network in Table 4.5.

\

Test Predicted T-P T-P T-P

Mass Mass T 138

0.0 12.5 -12.5 -- -9.1%

21.9 23.8 -1.9 -8.7% -1.4%

36.5 38.7 -2.2 -6.0% -1.6%

60.2 61.4 -1.2 -2.0% -0.9%

78.5 79.9 -1.4 -1.8% -1.0%

Table 4.8. Performance of network in Table 4.7 with different

selection of training and test sets.

4.5 Discussion of Approach 2

The results for the various antenna configurations are summarized in Table 4.9.

Test 2

Test 1 Test 2 Combined

Single Antenna 7.9% 12.8% 2.3%

Antennas 2, 3, 6 14.8% 10.1% 2.7%

Antennas 2, 3, 8 3.8%

Table 4.9. Average full-scale errors for antenna configurations

and test cases in Tables 4.3 - 4.8. For Test 2, both average

errors and the error of the average are given.

4-8



If the Test 1, Antennas 2, 3, and 6, result (14.8%) is treated as anomalous, then two

trends are evident in the data. First, the inclusion of multiple antennas provides only a

slightly better predictor than a single antenna does. Second, averaging multiple samples of

a given mass significantly improves the prediction.

These results are interpreted in terms of the limitations of the training set and the

limitations of the RF gauging method itself. First, the lack of significant improvement with

the use of additional antennas may be due to the reduction in training examples by a factor.

of 8. In the single antenna case, all antenna data is treated as if it were multiple examples

from a single antenna; thus, for a 25 case training set, 25 x 8 = 200 training vectors can be

generated. For the multiple antenna case, on the other hand, there are only 25 examples.

At the same time, the number of degrees of freedom in the network (i.e., weights) triples

in proportion to the increase in the input vector. Because there are more degrees of

freedom (146) in the network than there are training examples (25), it is difficult for the

network to generalize from the training set.

The trend in Table 4.9 toward improved results with averaged samples suggests a

limitation in the RF gauging method itself. This is because the mass distribution in the tank

is arbitrary, and differing combinations can produce large variations in the spectral signature

of a given total mass at a given antenna location.

Table 4.9 suggests a solution to this problem, namely that the gauging technique not

rely on a single measurement to estimate enclosed mass; rather, it should produce a read-

out only after a number of samples. This solution requires, however, that the mixing time

of fuel be short compared to the time scale on which the amount of fuel is to be measured,

as determined by the burn rate of the fuel. It is expected that this condition would be met

in an actual application.

4.6 Approach 3 - Mode Assignment Network

The resonances for a given antenna were combined to form a single spectrum. In

particular, the input vectors were created by binning the resonance lines into a set of 100

spectral bins covering the range from 300 to 1000 MHz. In order to preserve the resolution

of the frequency measurements, the lines were artificially broadened so that half of their

amplitude would be binned into adjacent bins (i.e., rectangular line profiles of width 2 bins).

While this technique retains all of the information in the resonance measurements,

the dimensionality of the input vectors must be increased substantially. This is not difficult

from a theoretical standpoint; however, in practice the resultant network has many more

weights than training examples, making it difficult to avoid overtraining.
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In an attempt to further reduce the dimensionality of the input, a principle

component analysis of the 25 training vectors was carried out. In particular, this involved

the creation of a matrix S, consisting of 25 masses x 8 antennas = 200 rows and 200

columns; i.e., each row of S corresponded to the 100 channel spectrum of a particular

antenna (masses are not included in this analysis). Next, the covariance matrix C was

constructed from S. The eigenvalues of C were calculated and ranked, and the eigenvalues

were used to create a 40 x 100 matrix P, which was then used to create a reduced set of 40

element input vectors R, according to R = S x P.

Using the training set R, the network was trained to predict masses from antennas

2, 3, and 6, as before.

Table 4.10 shows the performance of the network on the training and testing data as

a function of the number of passes through the training set. Clearly, the network has

already begun to overtrain on the first pass through the data.

Number MAE MAE MAE

of Passes Training Test 1 Test 2

1 33 35 17

2 30 38 21

5 24 47 24

10 22 54 27

20 18 62 26

30 14 66 30

100 4 85

Table 4.10. Performance of mode assignment network as a

function of passes through the training set. Errors are mean

absolute errors. The training set consisted of 25 mass examples.

Test 1 is a set of 6 different mass examples. Test 2 is a set of

5 identical mass examples.

4.7 Discussion of Approach 3

The results in Table 4.10 indicate that the network overtrained in a single pass;

therefore, this approach will not work for such a limited training set. The surprising ease

with which the network overtrained is probably a consequence of the efficient representation

of the data following the principle component analysis.
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4.8 Conclusions

A backpropagation network is capable of learning to estimate masses from input

spectral resonance measurements. Because of the high-dimensionality of the input space,

effective solution of the problem requires finding a compact representation of the input

space, as was done in the first approach, or requires a much larger training set. The

networks that have been constructed have performed very close to the required error,

tolerance. It would be valuable to have a larger data set for training and testing to obtain

a clearer understanding of their expected performance in a real setting.

Another possibility would be to implement the mapping with a nearest neighbor

classifying network, such as counterpropagation. CPN can train on limited data, as well as

perform more consistently in predicting intermediate values.
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SECTION 5

CLASSIFICATION OF INDUSTRIAL INERTIAL WELDS

USING A NEURAL NETWORK

5.1 Problem Statement

The goal of the project described in this section of the report was to develop and tes_

a neural network to determine the quality of an industrial inertial weld by examining data

accumulated during the actual occurrence of the welding operation.

5.2 Data Format

Every file that was used consisted of actual industrial welding data recorded during

a single weld operation. Three types of data were obtained: press, rpm, and actupset

[actupset = f(press,rpm)]. Here press is a measure of the hydraulic pressure applied while

performing the welding, rpm is the revolutions per minute of a flywheel used in the process,

and actupset is a measure of the length of the metal shaft being welded, which may decrease

slightly during the process. A reading for each type of data was taken every one-hundredth

of a second. The intersection of the press and rpm curves and the intersection of the rpm

and actupset curves were targeted for special attention in the analysis as two possible critical

points in the data (see Figure 5.1).

In order to determine the critical points, the data was scaled to the dimensions shown

in Figure 5.1. This was done by dividing press by 100 and rpm by 10 and by multiplying

actupset by 100.

The following is an example.

original data rescaled data

press rpm actupset press rpm actupset
2509.9 67.2 0.064 -> 25.099 6.72 6.400

2510.3 67.2 0.065 -> 25.103 6.72 6.500

2509.6 67.1 0.068 -> 25.096 6.71 6.800 <-- crit. pt #2
2511.2 67.0 0.069 -> 25.112 6.70 6.900

As shown, the second critical point occurs as soon as the scaled actupset becomes

greater than the scaled rpm. Likewise, the first critical point occurs when the scaled press

surpasses the scaled rpm.

There were a few files that had invalid entries, such as garbled data, invalid data,

missing data, etc. These files were discarded.
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5.3 Implementation of the Neural Network

A back propagation algorithm was used to implement this neural network. All

networks were constructed to gives results in terms of whether a weld was of type 'x' or type

'y', where the two types reflected the quality of the weld. The networks based their

examinations on characteristics of previous welds that were already known to be either type

'x' or type 'y'. Therefore, each network constructed learned to recognize patterns for type

'x' and type 'y' welds and then compared each weld in a test set to these patterns. The

results for a given weld were thus based on how well the weld fitted into the learned

patterns.

A first attempt was made to train a neural network on one second's worth of data

centered around each critical point. There was a limit to the number of input neurons

available in the network, so every third or fourth line of data was used. The network

showed no signs of converging for this training method. While training on welds of known

quality, it never recognized anything in the data to categorize a type 'y' weld. The network

always called a weld in its training data type 'x'.

The second attempt that was made converged. In this case, the first critical point was

ignored, except for one line of data where the actual intersection occurred, so that only the

second critical point (intersection of rpm and actupset) was examined. The network used

full resolution (every line of data) for 1.65 seconds centered around the critical point. This

resulted in 167 lines of data being used around the second critical point, with three numbers

per line, for a total of 501 input neurons. This meant there had to be at least 83 lines of

data before and after the line of data that depicted the point. There were a few files that

had less than 83 lines of data after the point. These files were discarded because they were

unsuitable for our neural network. The net structure called for two layers of 65 hidden

neurons, and two output neurons, one for type 'x' and one for type 'y'.

There were 51 usable files of data that were taken from welds of known quality. For

each attempt, ten of these files were excluded from the training set, so that they could be

used for testing purposes after the network was trained on the remaining 41 files. A training

tolerance of 0.1 was employed for each network. That is, the network, to be considered

trained, was required to correctly predict the pattern as type 'x' or type 'y' with type 'x' =

1 and type 'y' = 0 within a tolerance of 0.1 (the network employed a scale from 0 to 1).

As mentioned above, the first attempt never converged due to the choice of the data

sampling interval that was made, and was therefore abandoned. The second and subsequent

attempts converged on the 41 training files, being able to correctly classify them all within

a tolerance of 0.1. After these networks were trained in this way, they were tested utilizing

the ten reserved data files and the trained network.
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5.4 Testing the Neural Network

The trained network resulting from the convergent training of the second attempt

described above was tested on the 10 files that were kept out of the training set. With a

testing tolerance of 0.4, the network got nine out of ten correct. The file that was missed,

ANNETDA02\Pl\D3\F810340.F10, had data from a type 'x' weld, but the network showed

results of 50% type 'x' and 75% type 'y', indicating that it had characteristics of both a type

'x' and type 'y' weld.

Using the same data format as before, investigators created two permutations of the

original training and testing sets by interchanging the original testing files with some from

the training set. Both sets of permutated training data were used to train a new network.

All three versions were trained on 41 facts (input/desired output exemplars) and tested on

10 facts (two of which were type 'y'). All three test sets were different, with no single file

appearing in more than one set. This allowed the generation of three totally different

networks, tested on different sets.

The second network was trained with a tolerance of 0.05. When tested with a

tolerance of 0.4, the network got eight out of ten of the test set correct. The first missed,

file ANNETDA01\Pl\Dl\F810256.DAT, should have been type 'y', but the network showed

87.5% type 'x' and 25% type 'y'. The second missed file,

ANNETDA02\Pl\D3\F810722.F10, was a type 'x' file, but the network showed 12.5% type

'x' and 100% type 'y'.

The third network appeared to be much more successful. Like the second version,

it was trained with a tolerance of 0.05. When tested with a tolerance of 0.4, the network

achieved ten out of ten correct. The testing tolerance was repeatedly lowered to see exactly

how good the network was in making its evaluations. The last testing tolerance at which the

network was tested was 0.05, and it still evaluated all ten welds in its test set correctly.

A final neural network was trained on all 51 facts (i.e. leaving no testing facts

available). This was done using a training tolerance of 0.05. Since a neural network gets

better with more training facts, we expected this network to give a better performance than

the previous three versions, which in fact seemed to be the case.
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5.5 Results of the Neural Networks

Each of the four networks trained as described above were presented with 80 facts

of unknown status. The first two networks yielded results in which most files were classified

100% type 'x' and 0% type 'y', with occasional files going down to 62.5% type 'x' and up

to around 25% type 'y'. The third network showed results of 100% type 'x' and 0% type 'y'

for all 80 facts. For the final network, the network trained on the complete set of 51 facts,

the network fired 100% of the type 'x' output neuron and 0% of the type 'y' neuron on 79

facts. For one single fact, ANNETDA03\P2\D4\F860103.F10, both the type 'x' and the

type 'y' neurons fired at 100% strength.

Later the 80 test facts were revealed to be all type 'x' files. Therefore, the final

network was able to discriminate very reliably between type 'x' and type 'y' welds after

training on all the 51 training facts available. The weakness of this testing set was lack of

examples of 'y' data. More examples of the type 'y' welds were needed even during training

to be able to create a better model of the type 'y' welds. The network, in spite of limited

examples of data, was able to reliably classify the input samples from parameter sets which

contained data that was not easily classifiable by a human observer. It seemed to have been

keying on subtle cues in the data not immediately obvious to investigators. Further training

with larger and more complete data sets would increase the reliability of the network to

distinguish between type 'x' and type 'y' welds. This can be done in real time for quality

control of the manufacturing process.

This work shows a real application to a practical manufacturing process. A trained

network was able to reliably discriminate between type 'x' and type 'y' welds. This project

demonstrates the usefulness of neural nets in difficult pattern recognition problems.
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SECTION 6

RECOMMENDATIONS FOR FUTURE WORK

6.1 SSME Health Monitoring

We recommend completion of the development of the methods described above for

making the SSME shutdown decision so as to enable them to be tested and then used in

practice on the test-stand and in space.

The first step to be taken in this direction is the detailed analysis of and then

incorporation into neural networks and other decision structures of large amounts of recent

data. Data that is nominal is necessary. Data indicating minor faults in the engine, not

requiring an engine shutdown on the test-stand or in space should be provided. Any recent

data indicative of faults for which shuttle engineers now believe the engine should be shut

down is important. The set of PIDs should also be expanded so that every major part of

the engine is covered in terms of the detection of major faults. The kind of data analysis

that has been developed during the course of these investigations, both at NASA and

NETROLOGIC, should rapidly lead to a more complete feature set.

For reasons explained in Section 2, it is possible that the addition of more recent

data to the training data sets, as well as, the values of more PIDs, and of more features

calculated from raw PID values, may be adequate to handle the detection of all major
SSME faults. Nevertheless, neural net fault detection when actual failure data is not

available (SSMEs have not yet experienced any major failures in-flight) must be investigated.

Three standard neural net approaches to this problem immediately suggest themselves for

exploration, Kohonen's novelty detector, various methods for unsupervised instruction of

neural nets in which the neural net itself divides its input data into categories that appear

natural to it, and, the approach discussed in detail in Section 2 of this report that involves

including synthetic fault data in training sets. These approaches could also be helpful when

applying a network to nominal or anomalous data, whenever the amount of fault data is

insufficient to guarantee that it spans the whole domain of possible fault data. Adding of

features to about what is going on in the engine that was mentioned above is critical for this

new investigation. The new approach to fault-typing that has been discussed in terms of the

third (synthetic data) approach involved in having new output units representing the severity

of deviance (weak, medium, strong, for instance) of individual PIDs, or of the whole duster

of PID values would be a natural part of these investigations.

The problem of handling failures during transients must also be addressed. In

addition, methods for the first two seconds of the steady-state, while data is being gathered

to go into the averages used in current features, should be developed. During this time
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interval a network should work with raw PID values and determine whether a steady-state

has actually been reached (case 307 appears to provide an example in which this was never

the case), and also determine whether the values being taken on are within expected ranges

(cf. the SAFD approach). The experience gained during the analysis of the steady-state

situations will be applicable to this area.

6.2 Valve Signature Identification

To date, the valve Signature Identification Neural Network (SINN) project described

in Section 3 of this report has determined the basic feasibility of our approach. Our

prototype was able to identify valve types with "severe" simulated noise, and identify specific

valves, within a given type, with "moderate _ simulated noise. These investigations now need

to be expanded to implement and integrate this neural network system into the actual Atlas

vehicle environment.

The first thing required is to verify the data accuracy. Repeatable results are crucial

to the performance of the system in the noisy environment of the vehicle. Part of this

process should be studied in the laboratory using the Atlas Fluids System Integration Lab

(SIL) and the Parallel Equipment Module (PEM) at General Dynamics to accurately

provide the vehicle environment. Tests must include faults, pressure variations, multiple

events interference, and electromagnetic interference effects. The next part of this process

is to record this similar detailed data during an actual flight. This data would record engine

noise interference and acceleration effects on the signature characteristics of the valves.

Such an opportunity is available on the ALS Program Boost Recovery Module (BRM) Atlas
mission.

The second task would develop a spatial-temporal network. This would allow

continuous streaming of data to be sifted for the target signal characteristics. Once a signal

was detected, it would be buffered to the evaluation neural networks for valve identification.

The fourth task would develop multiple neural networks to perform in parallel to

identify the signature as to type and if possible the specific valve. These neural networks

would operate collectively to enhance reliability and the degree of confidence in the

analysis.

The fifth and final task would integrate the SINN system with an expert system

designed to fuse the observed results with the on-board flight computer commands and thus

close the feedback loop.

\

6-2



6.3 Cryogenic Fuel Tank Mass Gauging

\

There was an inadequate amount of data to determine whether neural networks

could estimate fuel masses better than other methods. The neural network methods did

perform comparably to existing methods. Since the results were promising and the problem

is an important one, the understanding gained from these early investigations should be

developed further with a larger data set.

6.4 Industrial Weld Quality Gauging

The work on the classification of industrial inertial welds described in Section 5 of

this report shows great promise for the use of neural nets in the area of industrial quality

control. We recommend that the methods of the investigations reported here be

implemented in a situation that would test the process over a long period of time, and that

the same techniques tried with other examples of industrial process and quality control.

Some of the techniques discussed in Section 6.1 and in the body of Section 2 concerning

training neural networks when the number of examples in one of the categories requiring

classification is very limited could also be of value in many instances here (for instance, very

few inertial welds are of inferior quality).
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APPENDIX A

SSME GRAPHS

This section contains examples of different types of graphs that have been used

during investigations of the SSME shutdown determination problem. The following

kinds of graphs are given:

A.1 Raw PID Values

A.2 Feature Values

A.3 Neural Net Output Units for Eleven Holdout Cases

A.4 Neural Network Output for the last time slices of Cases 457

and 364 with PID 207 Features Replaced with Zeros

A.5 Example of Euclidean Distance Fault Indication

On all the graphs in this section, the numbers along the bottom of the graph give

the time in sections from the beginning of the firing.
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Figure A.1.2 Graph of Raw Data Values, Case 307, PID 18

Main Combustion Chamber Coolant Discharge Temperature B
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High Pressure Fuel Turbine Discharge Temperatures A and B

(Correlated PID values)

A-4



c348
75.88

72.58

Raw Data £on case 348,

l]

12 PIDS

7

IHJ_ -_
I lW

_!1| !

U

._j__a
I

8

-3-

78.88
27S.88 279.88 283.88 287.88 291.88 295.88

Figure A.1.4 Graph of Raw Data Values, Case 340, PID 40

Oxidizer-Preburner Oxidizer Valve Actuator Position A

A-5



c348 Raw Da_a for case 348, 12 PID_
95.88

8

-4-

87.58

i i il1

88.88
275.88 279.88 283.88 287.88 291.88 295.88

Figure A.1.5 Graph of Raw Data Values, Case 340, PID 42
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Figure A.l.12 Graph of Raw Data Values, Case 463, PID 209
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Figure A.l.13 Graph of Raw Data Values, Case 463, PID 231
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Figure A.2.4 Graph of Feature 1 Values, Case 307, PID 18

Main Combustion Chamber Coolant Discharge Temperature B
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Figure A.2.5 Graph of Feature 2 Values, Case 307, PID 18
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Figure A.2.6 Graph of Feature 1 Values, Case 307, PID 231
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Figure A.2.8 Graph of Feature 1 Values, Case 307, PID 232

High Pressure Fuel Turbine Discharge Temperature B
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Figure A.2.9 Graph of Feature 2 Values, Case 307, PID 232

High Pressure Fuel Turbine Discharge Temperature B
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Figure A.2.10 Graph of Feature 1 Values, Case 340, PID 40

Oxidizer-Preburner Oxidizer Valve Actuator Position A
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Figure A.2.11 Graph of Feature 2 Values, Case 340, PID 40

Oxidizer-Preburner Oxidizer Valve Actuator Position A
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Figure A.A Graph of Feature 3 Values, Case 340, PID 40
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Figure A.2.13 Graph of Feature 1 Values, Case 340, PID 42
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Figure A.2.16 Graph of Feature 1 Values, Case 364, PID 209
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Figure A.2.17 Graph of Feature 2 Values, Case 364, PID 209
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Figure A.2.18 Graph of Feature 1 Values, Case 364, PID 231

High Pressure Fuel Turbine Discharge Temperature A
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Figure A.2.19 Graph of Feature 2 Values, Case 364, PID 231

High Pressure Fuel Turbine Discharge Temperature A
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Figure A.2.20 Graph of Feature 1 Values, Case 436t2, PID 42

Fuel Preburner Oxidizer Valve Actuator Position A
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Figure A.2.22 Graph of Feature 3 Values, Case 436t2, PID 42
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Figure A.2.23 Graph of Feature 1 Values, Case 436t2, PID 52
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Figure A.2.26 Graph of Feature 1 Values, Case 457t2, PID 209
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Figure A.2.27 Graph of Feature 2 Values, Case 457t2, PID 209
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Figure A.2.28 Graph of Feature 1 Values, Case 457t2, PID 231

High Pressure Fuel Turbine Discharge Temperature A
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Figure A.2.29 Graph of Feature 2 Values, Case 457t2, PID 231
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Figure A.2.30 Graph of Feature 1 Values, Case 463, PID 209

Low Pressure Oxidizer Pump Discharge Pressure A
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Figure A.2.31 Graph of Feature 2 Values, Case 463, PID 209

Low Pressure Oxidizer Pump Discharge Pressure A
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Figure A.2.32 Graph of Feature 1 Values, Case 463, PID 231

High Pressure Fuel Turbine Discharge Temperature A
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Figure A.2.33 Graph of Feature 2 Values, Case 463, PID 231

High Pressure Fuel Turbine Discharge Temperature A

A-47



no173 No173
1.00.

Holdout Case 173 em

-8-

8 .SB.

188.88 192.08 196.08 200.08 204.08

Figure A.3.1 Graph of Neural Net Output Unit 0, Holdout Case 173
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Figure A.3.3 Graph of Neural Net Output Unit 6, Holdout Case 173

Case 331 Unit
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Figure A.3.4 Graph of Neural Net Output Unit 7, Holdout Case 173
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Figure A.3.5 Graph of Neural Net Output Unit 8, Holdout Case 173

Case 364 Unit
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Figure A.3.6 Graph of Neural Net Output Unit 0, Holdout Case 225

Nominal/Fault Unit
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Figure A.3.7 Graph of Neural Net Output Unit 6, Holdout Case 225

Case 331 Unit
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Figure A.3.9 Graph of Neural Net Output Unit 8, Holdout Case 249
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Figure A.3.10 Graph of Neural Net Output Unit 9,
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Figure A.3.11 Graph of Neural Net Output Unit 0, Holdout Case 259
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Figure A.3.12 Graph of Neural Net Output Unit 7, Holdout Case 259
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Figure A.3.14 Graph of Neural Net Output Unit 2, Holdout Case 307
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Figure A.3.16 Graph of Neural Net Output Unit 0, Holdout Case 331
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Figure A.3.19 Graph of Neural Net Output Unit 9, Holdout Case 331
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Figure A.3.24 Graph of Neural Net Output Unit 8, Holdout Case 340
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Figure A.3.25 Graph of Neural Net Output Unit 0, Holdout Case 364

Nominal/Fault Unit
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Figure A.3.26 Graph of Neural Net Output Unit 3, Holdout Case 364

Case 249 Unit
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Figure A.3.27 Graph of Neural Net Output Unit 4, Holdout Case 364

Case 259 Unit

A-74



no364t4 No364 Holdout case 364 Graph of tfMe slice 4
1.00.

-7-

.

8.88.
74.08 142.08 218.08 278.88 346.08 414.80

Figure A.3.28 Graph of Neural Net Output Unit 7,
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Figure A.3.29 Graph of Neural Net Output Unit 9, Holdout Case 364
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Figure A.3.30 Graph of Neural Net Output Unit 0,
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Figure A.3.31 Graph of Neural Net Output Unit 3, Holdout Case 436
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Figure A.3.33 Graph of Neural Net Output Unit 8, Holdout Case 436
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Figure A.3.34 Graph of Neural Net Output Unit 0, Holdout Case 457

Nominal/Fault Unit

A-81



no457 Ho457 Holdou¢ Case 457 all time slices 8.
1.88.

-2-

t

e .es_' -I

8.88 24.88 48.88 72.88 96.88 128.88

Figure A.3.35 Graph of Neural Net Output Unit 2, Holdout Case 457
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Figure A.3.36 Graph of Neural Net Output Unit 3, Holdout Case 457

Case 249 Unit
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Figure A.3.37 Graph of Neural Net Output Unit 4, Holdout Case 457

Case 259 Unit
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Figure A.3.38 Graph of Neural Net Output Unit 5, Holdout Case 457

Case 307 Unit

A-85



no457 No457 Holdou_ Case 457 all %l_e slices 8.
1.80.

-6-

8.51

_"_" ..... _".... ;" _rv _v -_'_j --_" " "'" I ......

8.88.
8.88 24.88 48.88 72.88 96.88 128.88

Figure A.3.39 Graph of Neural Net Output Unit 6, Holdout Case 457
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Figure A.3.40 Graph of Neural Net Output Unit 7,

Case 340 Unit
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Figure A.3.41 Graph of Neural Net Output Unit 8, Holdout Case 457

Case 364 Unit
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Figure A.3.42 Graph of Neural Net Output Unit 9, Holdout Case 457
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Figure A.3.43 Graph of Neural Net Output Unit 0,
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Figure A.3.44 Graph of Neural Net Output Unit 2,
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Figure A.3.45 Graph of Neural Net Output Unit 3, Holdout Case 463

Case 249 Unit
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Figure A.3.46 Graph of Neural Net Output Unit 4, Holdout Case 463
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Figure A.3.47 Graph of Neural Net Output Unit 5, Holdout Case 463

Case 307 Unit
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Figure A.3.48 Graph of Neural Net Output Unit 6,
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Figure A.3.49 Graph of Neural Net Output Unit 7, Holdout Case 463

Case 340 Unit
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Figure A.3.50 Graph of Neural Net Output Unit 8, Holdout Case 463
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Figure A.4.3 Graph of Neural Net Output Unit 5, Holdout Case 457
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Figure A.4.5 Graph of Neural Net Output Unit 7, Holdout Case 457

PID 209 Features Replaced with Zeros
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Figure A.4.6 Graph of Neural Net Output Unit 8, Holdout Case 457
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Figure A.4.7 Graph of Neural Net Output Unit 0, Holdout Case 364

PID 209 Features Replaced with Zeros
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Figure A.4.8 Graph of Neural Net Output Unit 3, Holdout Case 364
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APPENDIX B

B.1 Data File Formats, Valve Signature Investigations

The ASYST data collection software has an auto file name generation portion,

that puts each of the test runs into its own file, and continually keeps track of each of

the tests that it has been requested to run. The data is written out in the binary format

noted previously in Table 3.1. The data was collected for five Circle Seal valves, three

Wright valves, and two Marotta valves. Each of the valves data runs were stored in

separate directories on a diskette with the valve's name as the name of the directory.
The tests that were run are stored on two diskettes and are listed in Table B.I.1 and

Table 3.6.1.2. Table A.1 contains the files that are listed on the first disk and have the

samples of each of the ten valves. This disk also contains the faulted data samples of the

Marotta valve.

Table B.I.1 Files Included on Disk 1

Directory Files Comments

evl cs_21.12 - cs_40.12
evl cs_41.13 - cs_60.13
ev2 cs_80.13 - cs_99.13
ev4 cs_100.15 - cs_ 119.15
ev6 cs_ 120.9 - cs_ 139.9
ev5 cs_ 140.8 - cs_ 159.8
reml cs_ 177.5 - cs_ 1963
rem2 cs_ 197.4 - cs 216.4
rein3 cs_217.11 - cs_236.11
rein3 cs_237.11 - cs_256.11
ev2m cs_259.13 - cs_278.13
ev2m cs_279.13 - cs_298.13
ev3 cs_333.14 - cs_352.14
ev2m cs_353.13 - cs_372.13
ev2m cs_373.13 - cs_392.13
ev2m cs_393.13 - cs_412.13

Circle Seal valve evl (poppet up)
Circle Seal valve evl (poppet up) [50 invisible runs]
Circle Seal valve ev2 (poppet up)
Circle Seal valve ev4 (poppet down)
Circle Seal valve ev6 (poppet down)
Circle Seal valve ev5 (poppet down)
Wright
Wright (noise dose)
Wright
Wright [50 invisible runs]
Marotta (lose modifiable/faultable valve)
Marotta (lose faultable valve) [50 invisible runs]
Marotta

Marotta (lose faultable valve) [weak spring= 3]
Marotta (lose faultable valve) [failed open= 1]
Marotta (lose faultable valve) [failed closed= 21

Total of 320 flies

After the samples were collected for each of the valves, and a couple of failure

data samples were taken and recorded, then the pressure was introduced into the system.

The files that are listed on the second disk are from the pressure readings. Because these

samples were taken on a different day, a repeated set of control data was taken that

consisted of the valves normally cold state and the warm state (after 50 invisible runs).

The control data were collected before the samples with the pressure was taken. Each of

the readings with the different levels of pressure also had another set of invisible runs to

ensure no temperature effects were observed. The files for the pressure reading are
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listed in Table B.1.2.

Directory

root

root
root
root

root
root

Table B.1.2 Pressure Readings Files

Files Comments

CS__413.12-CS__432.12
CS433.12 -cs__452.12
CS__453.12-CS__472.12
CS__473.12-CS__492.12

CS__493.12- cs__512.12
cs513.12 -cs__532.12

Circle Seal valve evl (cold data)
Circle Seal valve evl (warm data) [50 invisible runs]
Circle Seal valve evl [300 psig= 14] [20 invisible runs]
Ch'cle Seal valve evl [500 psig= 16] [20 invisible runs] a
difference in the error code of these file exists where the

error code should be 18 for the pressure of 500 psig.
Circle Seal valve evl [100 psig= 10] [20 invisible runsl
Circle Seal valve evl [raw data= 91 [20 invisible runs] these
f'des are 1600 bytes smaller than the rest of the files

Total of 120 files

The total number of files on the two diskettes is 440 files. The output of the raw

data samples that were taken are 1600 bytes smaller than the rest of the files. The

program was modified to output the raw data rather than a set of data that has already

been smoothed. In this modification of the program the raw data may have been stored

as integer data values rather than real and may have been the sensed data from the

D-to-A converter, and may not be of any use here.

On the following pages, the complete source code listing for the ASYST data

collection program is provided. The initial file merely loads the remaining files into the

ASYST system. Two flies, START.BIT and C_SIG.VAR, contain only variable

definitions. One file, C_SIG.DIG, contains the hardware drivers. File C_SIG.A2D

collects the data, and C_SIG.STA performs analytical functions on the data (these

functions were not used in performing this CRAD). The final file, C_SIG.EDT, contains

the screen plotting routines and saves the data to a file.
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B.1.1 Initialization File

ECHO.OFF

LOAD \NEWASYST\JIM\NETS\START.BIT
LOAD \NEWASYST\JIM\NETS\C_SIG.VAR
LOAD \NEWASYST\JIM\NETS\C SIG.DIG
LOAD \NEWASYST\JIM\NETS\CrSIG.A2D

LOAD \NEWASYST\JIM\NETS\C-SIG.STA
LOAD \NEWASYST\JIM\NETS\C-SIG.EDT
ECHO.ON
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B.1.2 C SIG.VAR

ECHO. OFF

exp. mem> system.buffer
65000 system.buffer, size
:nd normal.display ;
: sd stack, display ;
• 2DUP OVER OVER ;
: LAST \ (ARRAY-- LAST_ELEMENT)

[ i []DIM] ;
: NUMBER>STRING \ ( NUMBER -- )

" " 2 "LEN 2 "SUB ;

SCALAR EVI 12 EVI :-
SCALAR EV2 13 EV2 :E
SCALAR EV3 14 EV3 :-
SCALAR EV4 15 EV4 :-
SCALAR EV5 8 EV5 :-
SCALAR EV6 9 EV6 :-
SCALAR EV7 i0 EV7 :_

SCALAR LREM2 6 LREM2 :-
SCALAR REMI 5 REMI :-
SCALAR REM2 4 REM2 :-
SCALAR REM3 ii REM3 :-
SCALAR LREM3 7 LREM3 :-
SCALAR LREM4 0 LREM4 :-
SCALAR REGVENT 3 REGVENT :-

ECHO.OFF

DIM[ 400 ] DMA.ARRAY OPENDATA
DIM[ 400 ] DMA.ARRAY CLOSEDATA

TOKEN DIFFDATA
EXP.MEM> DIFFDATA

TOKEN OPEN TIMES
EXP.MEM> OPEN TIMES

TOKEN CLOSE TIMES
EXP.MEM> CLUSE TIMES

TOKEN OPENDATA.SMOOTH
EXP.MEM> OPENDATA.SMOOTH

TOKEN CLOSEDATA.SMOOTH
EXP.MEM> CLOSEDATA.SMOOTH

INTEGER SCALAR OPEN SAMPLES

OPENDATA i []DIM OPEN SAMPLES :-
DROP

INTEGER SCALAR CLOSE SAMPLES
CLOSEDATA i []DIM CLOSE SAMPLES :-
DROP

INTEGER SCALAR INVIS RUNS

INTEGER DIM[ 7 ] ARRAY STATUS ARRAY

B-4



INTEGER DIM[ 64 ] ARRAY RUNDATA_ARRAY

INTEGER SCALAR FAIL CODE

REAL SCALAR OPEN DIFF THRESHOLD
REAL SCALAR CLOSE DIFF THRESHOLD
REAL SCALAR OPEN TIME -
REAL SCALAR CLOSE TIME

REAL SCALAR DEFAULT OPEN TIME
REAL SCALAR DEFAULT-CLOSE TIME

INTEGER SCALAR VALUE BIT NUM
INTEGER SCALAR XDUCER CH_EL NUM
REAL SCALAR ATOD GAIN
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B.1.3 C_SIG.DIG

ECHO. OFF

4 VALVE BIT NUM :-

\ D/A CONVERTER SETUP

3 DIGITAL.TEMPLATE DIG.OUT \ TEMPLATE FOR D2820 WRITES TO BOTH BYTES
DIGITAL.INIT

: ON VALVE BIT NUM
2 SWAP W* -

2 16 ** i - swap
DIGITAL.OUT ;

: OFF
2 16 **
I -

DIGITAL.OUT ;
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B.1.4 C_SIG.A2D

ECHO.OFF

\ SYSTEM PARAMETERS
5 XDUCER CHANNEL NUM :-
3 ATOD GAIN :-
I00 OPEN TIME :-
I00 CLOSE TIME :-
200 DEFAUtT CLOSE TIME :-
200 DEFAULT-OPEN TIME :-

\ A/D SETUP

XDUCER CHANNEL NUM DUP A/D.TEMPLATE OPEN.TEMP
OPENDATA DMA.TEMPLATE.BUFFER
OPEN TIME OPEN SAMPLES / CONVERSION.DELAY

ATOD-GAIN A/D.GAIN
A/D.INIT

XDUCER CHANNEL NUM DUP A/D.TEMPLATE CLOSE.TEMP
CLOSEDATA DMA.TEMPLATE.BUFFER
CLOSE TIME CLOSE SAMPLES / CONVERSION.DELAY
ATOD GAIN A/D.GAIN

A/D.YNIT

XDUCER CHANNEL NUM DUP A/D.TEMPLATE DEFAULT_OPEN.TEMP
OPENDATA DMAoTEMPLATE.BUFFER
DEFAULT OPEN TIME OPEN SAMPLES / CONVERSION.DELAY

ATOD GAIN A/D.GAIN
A/D.INIT

XDUCER CHANNEL NUM DUP A/D.TEMPLATE DEFAULT_CLOSE.TEMP
OPENDATA DMA.T_[PLATE.BUFFER
DEFAULT CLOSE TIME CLOSE SAMPLES / CONVERSION.DELAY

ATOD GAIN A/D?GAIN
A/D.INIT

\ A/D WORDS
: BEGIN DMA ACQUIRE

ATO_ GAYN A/D.GAIN
A/D.INIT

A/D.IN>ARRAY(DMA) ;

• TIMES \ (CONVERSION.DELAY NUMBER OF SAMPLES -- ARRAY OF TIMES)
REAL RAMP i - * ;

: SET DELAYS
OPEN.TEMP
OPEN TIME OPEN SAMPLES / CONVERSION.DELAY

A/D.INIT
?CONVERSION.DELAY OPEN SAMPLES TIMES BECOMES> OPEN_TIMES

CLOSE.TEMP
CLOSE TIME CLOSE SAMPLES / CONVERSION.DELAY

A/D.INIT
?CONVERSION.DELAY CLOSE SAMPLES TIMES BECOMES> CLOSE_TIMES

: SCALEIT
OPENDATA -960 1040 A/D.SCALE OPENDATA :-
CLOSEDATA -960 1040 A/D.SCALE CLOSEDATA :-
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B.l.5 C_SIG.STA

ECH0.0FF

: FIND PEAKS \ (DATA -- [MAXIMA] MINIMUM)
2 SET.#.OPTIMA

DUP LOCAL.MAXIMA NOT IF ." ERROR -- NO MAXIMA FOUND! " QUIT
ELSE

I SET.#.OPTIMA

LOCAL.MINIMA NOT IF ."ERROR -- NO MINIMUM FOUND! " QUIT
THEN

THEN ;

: AREA \ (DATA TIMES -- AREA) NOTE: MUST BE IN CORRECT TEMPLATE
INTEGRATE.DATA LAST * ;

: OPEN EXP CURVE \ RETURNS EXPONENTIAL CURVE FIT BETWEEN IST AND 2ND PEAK
OPENDATA.SMOOTH [ 20 ]
2 SET.#.OPTIMA LOCAL.MAXIMA
CATENATE
ROT

OPEN TIMES [ 20 ]
CATENATE
SWAP

LEASTSQ.EXP.FIT

OPEN TIMES OVER [ i ] *
SWAP [ 2 ] + EXP ;

: CLOSE_EXP_CURVE ;

: OPENWORK \ ( -- OPEN WORK )
OPENDATA.SMOOTH OPEN TIMES AREA
OPEN EXP CURVE OPEN TIMES AREA

: CLOSEWORK \ ( -- CLOSING WORK )
CLOSE EXP CURVE CLOSE TIMES AREA
CLOSEDATA?SMOOTH CLOSE TIMES AREA

|
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B.1.6 C_SIG.EDT

ECHO.OFF

3 OPEN DIF THRESHOLD :-
3 CLOSE DIF THRESHOLD :-

: SMOOTHIT \ SMOOTHS OPEN AND CLOSEDATA ARRAYS, STORES IN •SMOOTH ARRAYS
.3 SET.CUTOFF.FREQ
OPENDATA SMOOTH BECOMES> OPENDATA.SMOOTH
CLOSEDATA SMOOTH BECOMES> CLOSEDATA.SMOOTH ;

• DRAW.GRAPHS
CLOSE TIMES CLOSEDATA.SMOOTH XY.AUTO.PLOT
OPEN TIMES OPENDATA.SMOOTH XY.DATA.PLOT ;

: STATS ; \ ARE TBD

: ROUNDTO \ ( DIVISOR NUMBER -- ROUNDED NUMBER )
DUP ROT MODULO - ;

: C_SIG_ACQUIRE
SET DELAYS

OPEN.TEMP

BEGIN_DMA_ACQUIRE
ON
OPEN TIME MSEC.DELAY

200 MSEC.DELAY \ SETTLING TIME

CLOSE.TEMP

BEGIN_DMA_ACQUIRE
OFF
CLOSE TIME MSEC.DELAY

SCALEIT

SMOOTHIT ;

: FIND OPEN END

OPENDATA.SMOOTH []MAX OPEN_DIFF_THRESHOLD -
OPEN SAMPLES 20 DO

OPENDATA.SMOOTH [ I ] OVER > IF DROP I LEAVE
THEN LOOP
?CONVERSION.DELAY * i0 +

5 SWAP ROUNDTO ; \ ROUNDING ASSURES REPEATABILITY OF SCALING

: FIND CLOSE END

OPgNDATA_SMOOTH []MIN CLOSE_DIFF_THRESHOLD +
CLOSE SAMPLES 20 DO

Cr.OSEDATA.SMOOTH [ I ] OVER < IF DROP I LEAVE
THEN LOOP
?CONVERSION.DELAY * i0 +
5 SWAP ROUNDTO ;

: VALVE.INIT \ (VALVE_BIT_NUM -- )
VALVE BIT NUM :- ;
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: C SIG

-C SIG ACQUIRE
STATS-

DRAW. GRAPHS ;

: TEST NUM.TEMP
FILE. TEMPLATE
0 COMMENTS

INTEGER DIM[ i ] SUBFILE
END ;

: NEW TEST \ ( -- NEW RUN # ) INCREMENTS THE TEST COUNTER AND RETURNS A #.
TEST NUM.TEMP - -

FILE_OPEN \NEWASYST\JIM\NETS\TEST.NUM
I SUBFILE

FILE>UNNAMED.ARRAY I +
DUPARRAY>FILE
ill
FILE.CLOSE ;

: DATA WRITE

new test NUMBER>STRING

"-\NEWASYST\JIM\NETS\CS " "SWAP "CAT \ CREATES A STROMG CS XX
.... VALVE BIT NUM NUMBER>STRING "CAT

"CAT _ PUTS THEM ALL TOGETHER

"DUP

DEFER> RANDOM.FILE.CREATE
DEFER> RANDOM.OPEN

"TIME " " "CAT

"DATE "CAT " : " "CAT RUNDATAARRAY ">ARRAY \ TIME, DATE, COMMENTS
FAlL CODE STATUS ARRAY [ I ] :-
VALV_ BIT NUM STATUS ARRAY [ 2 ] :-
OPEN TIME-STATUS ARRAY [ 3 ] :-
OPEN-SAMPLES STATUS ARRAY [ 4 ] :-
CLOSE TIME STATUS AIVJIAy [ 5 ] :-
CLOSE-SAMPLES STATUS ARRAY [ 6 ] :-
INVIS-RUNS STATUS AR_Y [ 7 ] :-
RUNDATA AN_RAY RANDOM.PUT
STATUS _J_/IAY RANDOM.PUT
OPENDATA.SMOOTH RANDOM.PUT

CLOSEDATA.SMOOTH RANDOM.PUT
RANDOM.CLOSE

: MULTI C SIG
ND

CR ." INPUT THE FAILURE CODE FOR THIS RUN (0-NO FAILURE): "
"INPUT 0 "NUMBER FAlL CODE :-

CR ." INPUT THE NUMEBR OF 'INVISIBLE' RUNS: "
"INPUT 0 "NUMBER INVIS RUNS :-

CR ." INPUT THE NUMBER-OF RECORDED RUNS: "
"INPUT 0 "NUMBER
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GRAPHICS. DISPLAY
INVIS RUNS I DO

C--SIG_ACQUIRE
LOOP

i+ I DO

C_SIG ACQUIRE
CR ." RUN #" I INVIS RUNS +

i I - IF open times opendata.smooth xy.auto.plot
ELSE OPEN TIMES OPENDATA.SMOOTH xy.data.plot

THEN
CLOSE TIMES CLOSEDATA XY.DATA.PLOT
DATA WRITE
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B.2 Neural Network Data Files

The files included on the third disk (Disk #3) are specified here. These include:
all the source code for the data preprocessing system; all the training and test set data,
including the normalization files for the close-valve network; the network files that
specify the final weights after training; and all the result files that demonstrate the

network's responses during testing at all noise levels and with both the training and test
set data files. The files are organized into directories for easier access. These directories
are as shown below.

DATAFILE: contains all the training and test data, including normalization files

NETWORKS: contains the ".NET" files for the trained networks

PROGRAMS: contains the C source code for the preprocessing routines

RESULTS: contains the test results

OPEN: for the open-valve network
TRAIN: processing the training dataset at various noise levels
TEST: processing the test dataset at various noise levels

CLOSE: for the close-valve network

TRAIN: processing the training dataset at various noise levels
TEST: processing the test dataset at various noise levels

Results files are named according to their contents. The first letter of the file
name is "O" for an open-valve network result, and "C" for a close-valve network result.

The next two digits indicate the amount of noise present when the data was processed;
this ranges from "00" for no noise to "50" for 50% noise. The final letters designate which
data set was used, "TRN" for the training set and "TS'F' for the test set.

The internal format of the files can be read using the C program READFILE.C
contained in the PROGRAMS directory. It is thoroughly described in the ANSim Users
Manual as well.
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B.3 List of Figures in Section 3

Figure

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

Schematic representation of Smart BIT pneumatic test bench

Photograph of Smart BIT pneumatic test bench

A Circle Seal valve

A Marotta valve

Applying a current through the coil windings causes the poppet to move,

which generates a reverse current in the coil

The compression of the return spring when the poppet core pops up

provides the tension necessary to force the poppet back down into the coil

once the electromagnetic conditions of the coil permit

Sample valve signatures showing relative ease of identification

A typical current signature with features marked

Typical Circle Seal signatures for valve-open (increasing current) and

valve-close (decreasing current) state changes

Typical Wright valve signature curves. Note the higher current and shorter

response time compared to Circle Seal valves

A typical set of signatures for a Marotta valve. Notice that these valves

have both the high current of the Wright and the long response time of the

Circle Seal valves

Signatures from all three valve types are superimposed to delineate the
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3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

differences between them

One Circle Seal valve had an anomalous signature

A comparison between the signatures of the anomalous Circle Seal valve

(#15) and a more typical one (#12)

The signature of a Marotta valve with a weak spring (low spring

constant). No other failures for this signature

A Marotta valve signature with a medium-strength spring

The signature of a Marotta valve with a strong spring

This chart summarizes the differences in signature for a Marotta valve with

variations in the strength of the spring or with deliberate failures induced

A Marotta valve with the screw adjustment tweaked has a remarkably

altered signature curve

A Circle Seal valve's signature becomes quite complex when the screw

adjustment is altered

When the Circle Seal valve's screw adjustment is too extreme, the valve

fails to operate. This is the resulting signature

A Circle Seal valve's signature curve can change dramatically as failures or

misadjustments occur

The signature of a Marotta valve varies slightly as it warms up under use.

The curve slowly moves from the cold position to the warm position and

then stabilizes there

The effects of pressure at the valve are marked and highly distinguishable.
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3.25

3.26

It seemslikely that a neural network could be trained to estimate pressure

at the valve from the valve's current signature

The signatureof two valvesacting simultaneouslyis the mathematical sum

of the two individual signatures,clipped by the maximum range of the

sensor

A Marotta valve operated upside down shows very little change in its

signature
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"_ B.4 List of Tables in Section 3

Table

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Data run header format

Valve number and failure code clarification

Failure code meanings

The output pattern element definition

Open network's performance with training data

Open network's performance with test data

Closed network's performance with training data

Closed network's performance with test data

3.6.1.1 Files included on Disk #1

3.6.1.2 Pressure readings files
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